OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1088–1099

Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser

Nathan D. Zameroski, Gordon D. Hager, Wolfgang Rudolph, and David A. Hostutler  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1088-1099 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001088


View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental slope efficiencies of 72% to 76% are achieved for a pulsed Rb-methane optically pumped alkali metal vapor laser with pump intensities up to 120 kW / cm 2 . Measurements characterizing the temporal dynamics, spectral width, beam diameter, and M 2 values of the 795 nm laser beam are presented. M 2 values indicate that the 795 nm laser beam is 10 to 20 times diffraction limited. The laser system’s response to changes in the pump’s spectral width, the Rb number density, relaxant concentration, and pump intensity are examined with a broadband time-dependent one-dimensional rate equation model. The experimental data and the modeling results are shown to be in good agreement for a wide range of experimental conditions.

© 2011 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 6, 2011
Manuscript Accepted: February 17, 2011
Published: April 15, 2011

Citation
Nathan D. Zameroski, Gordon D. Hager, Wolfgang Rudolph, and David A. Hostutler, "Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser," J. Opt. Soc. Am. B 28, 1088-1099 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003). [CrossRef] [PubMed]
  2. J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010). [CrossRef]
  3. J. Zweiback and W. F. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525 (2008). [CrossRef]
  4. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004). [CrossRef]
  5. T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007). [CrossRef]
  6. B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the Laser and Optics Research Center of the U.S. Air Force Academy,” Proc. SPIE 7005, 700524 (2008). [CrossRef]
  7. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010). [CrossRef]
  8. J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009). [CrossRef]
  9. G. D. Hager and G. P. Perram, “Extended saturation analysis and analytical model of diode pumped alkali lasers” Proc. SPIE 7581, 75810J (2010). [CrossRef]
  10. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010). [CrossRef]
  11. C. D. Lewis, “A theoretical model analysis of the absorption of a three level diode pumped alkali laser,” Master’s thesis (Department of Engineering Physics, Graduate School of Engineering and Management, Air Force Institute of Technology, 2009), http://handle.dtic.mil/100.2/ADA495858.
  12. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocardon-free resonance transition 795 nm rubidium laser,” Opt. Lett. 322423–2425. (2007). [CrossRef] [PubMed]
  13. G. A. Pitz and G. P. Perram, “Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers,” Proc. SPIE 7005, 700526 (2008). [CrossRef]
  14. M. D. Rotondaro and G. P. Perram, “Role of rotational-energy defect in collisional transfer between the 5P21/2,3/2 levels in rubidium,” Phys. Rev. A 57, 4045–4048 (1998). [CrossRef]
  15. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009). [CrossRef]
  16. D. A. Steck, “Rubidium 85 D line data & rubidium 87 D line data,” http://steck.us/alkalidata.
  17. N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011). [CrossRef]
  18. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines ((5S21/2→5P21,2,5P23,2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997). [CrossRef]
  19. A. Gallagher, “Rubidium and cesium excitation transfer in nearly adiabatic collisions with inert gases,” Phys. Rev. 172, 88–96 (1968). [CrossRef]
  20. A. Siegman, Lasers (University Science, 1986).
  21. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965). [CrossRef]
  22. W. Koechner and M. Bass, Solid-State Lasers—A Graduate Text (Springer2003).
  23. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423(1988). [CrossRef]
  24. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993). [CrossRef]
  25. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D.R.Hall and P.E.Jackson, eds. (Institute of Physics, 1989), pp. 136–142.
  26. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall1995).
  27. R. J. Freiberg and A. S. Halsted, “Properties of low order transverse modes in argon ion lasers,” Appl. Opt. 8, 355–362 (1969). [CrossRef] [PubMed]
  28. W. H. Carter, “Spot size and divergence for Hermite Gaussian beams of any order,” Appl. Opt. 19, 1027–1029 (1980). [CrossRef] [PubMed]
  29. C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963). [CrossRef]
  30. J. P. Goldsborough, “Beat frequencies between modes of a concave-mirror optical resonator,” Appl. Opt. 3, 267–275 (1964). [CrossRef]
  31. U. P. Oppenheim and M. Natfaly, “Observation of mode pulling in a CO2 laser,” Appl. Opt. 23, 661–664 (1984). [CrossRef] [PubMed]
  32. A. E. Siegman, “Unstable laser resonators,” Appl. Opt. 13, 353–367 (1974). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited