OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1100–1103

Atomic filter with large scale tunability

Shuangqiang Liu, Yundong Zhang, Hao Wu, and Ping Yuan  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1100-1103 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an atomic filter configuration with large tunability based on selective optical-pumping-induced anisotropy. Theoretical simulation shows that the filter structure, by using a counterpropagating pump, can achieve higher transmission and a narrower passband than that using a copropagating pump due to the elimination of Doppler broadening. In addition, the filter’s tunability over 100 GHz via Aulter–Townes splitting and filtering characteristics is analyzed.

© 2011 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(260.1440) Physical optics : Birefringence
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 19, 2010
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 16, 2011
Published: April 15, 2011

Shuangqiang Liu, Yundong Zhang, Hao Wu, and Ping Yuan, "Atomic filter with large scale tunability," J. Opt. Soc. Am. B 28, 1100-1103 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988). [CrossRef]
  2. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995). [CrossRef]
  3. H. Chen, M. A. White, David A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996). [CrossRef] [PubMed]
  4. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002). [CrossRef]
  5. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890–892 (2005). [CrossRef] [PubMed]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007). [CrossRef] [PubMed]
  7. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef] [PubMed]
  8. F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008). [CrossRef] [PubMed]
  9. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991). [CrossRef] [PubMed]
  10. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical fitler,” Opt. Lett. 16, 867–869 (1991). [CrossRef] [PubMed]
  11. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995). [CrossRef] [PubMed]
  12. Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997). [CrossRef]
  13. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001). [CrossRef]
  14. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001). [CrossRef]
  15. L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998). [CrossRef]
  16. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995). [CrossRef] [PubMed]
  17. L. D. Turner, V. Karagnanov, and P. J. O. Teubner, “Sub-Doppler bandwidth atomic atomic optical filter,” Opt. Lett. 27, 500–502(2002). [CrossRef]
  18. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009). [CrossRef] [PubMed]
  19. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009). [CrossRef]
  20. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited