OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1104–1110

Beat-note locking in dual-polarization lasers submitted to frequency-shifted optical feedback

Jérémie Thévenin, Marc Vallet, Marc Brunel, Hervé Gilles, and Sylvain Girard  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1104-1110 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive a delay-differential equation model that describes continuous-wave (cw) or passively Q-switched (PQS) two-frequency solid-state lasers submitted to frequency-shifted feedback (FSF). The study focuses on the locking of the beat note between the two free-running laser frequencies to a reference external frequency. The locking domain is obtained analytically in the cw regime. The PQS regime is treated by adding a saturable absorber population in the model equations. In this case, numerical simulations permit us to evaluate a locking range that is smaller than in the cw case. We find good agreement between the theoretical predictions and experiments carried out with a cw diode-pumped dual-polarization Nd:YAG laser as well as with previously published experimental results obtained with cw Er:Yb:glass [ Opt. Lett. 32, 1099 (2007)] and PQS Nd:YAG [ Opt. Lett. 33, 2524 (2008)] lasers. Applications of the FSF locking technique include the lidar–radar technique, for which a highly coherent beat note is required.

© 2011 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 22, 2010
Revised Manuscript: March 10, 2011
Manuscript Accepted: March 10, 2011
Published: April 15, 2011

Jérémie Thévenin, Marc Vallet, Marc Brunel, Hervé Gilles, and Sylvain Girard, "Beat-note locking in dual-polarization lasers submitted to frequency-shifted optical feedback," J. Opt. Soc. Am. B 28, 1104-1110 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Otsuka and H. Kawaguchi, “Period-doubling bifurcations in detuned lasers with injected signals,” Phys. Rev. A 29, 2953–2956 (1984). [CrossRef]
  2. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111–1114(1994). [PubMed]
  3. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001). [CrossRef]
  4. P. Nerin, P. Puget, P. Besesty, and G. Chartier, “Self-mixing using a dual-polarisation Nd:YAG microchip laser,” Electron. Lett. 33, 491–492 (1997). [CrossRef]
  5. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and P. Leprince, “Self-mixing laser Doppler velocimetry with a dual-polarization Yb:Er glass laser,” Appl. Phys. B 86, 169–176(2007). [CrossRef]
  6. F. V. Kowalski, P. D. Hale, and S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988). [CrossRef] [PubMed]
  7. H. Guillet de Chatellus and J. P. Pique, “Statistical properties of frequency shifted feedback lasers,” Opt. Commun. 283, 71–77 (2010). [CrossRef]
  8. H. Sabert and E. Brinkmeyer, “Pulse generation in fiber lasers with frequency shifted feedback,” J. Lightwave Technol. 12, 1360–1368 (1994). [CrossRef]
  9. L. Kervevan, H. Gilles, S. Girard, and M. Laroche, “Beat-note jitter suppression in a dual-frequency laser using optical feedback,” Opt. Lett. 32, 1099–1101 (2007). [CrossRef] [PubMed]
  10. M. Brunel and M. Vallet, “Pulse-to-pulse coherent beat note generated by a passively Q-switched two-frequency laser,” Opt. Lett. 33, 2524–2526 (2008). [CrossRef] [PubMed]
  11. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  12. A. E. Siegman, Lasers (University Science, 1986).
  13. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999). [CrossRef]
  14. A. Le Floch and G. Stephan, “La condition de résonance dans les lasers anisotropes contenant des lames biréfringentes,” C. R. Acad. Sci. B 277, 265–268 (1973).
  15. M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997). [CrossRef]
  16. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A 46, 1692–1695 (1992). [CrossRef] [PubMed]
  17. N. D. Lai, F. Bretenaker, and M. Brunel, “Coherence of pulsed microwave signals carried by two-frequency solid-state lasers,” J. Lightwave Technol. 21, 3037–3042 (2003). [CrossRef]
  18. L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377(1995). [CrossRef]
  19. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41, 5702–5712(2002). [CrossRef] [PubMed]
  20. R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006). [CrossRef] [PubMed]
  21. T. Erneux, Applied Delay Differential Equations (Springer,2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited