OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1118–1123

Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G

Christian Tolentino Dominguez, Rogério L. Maltez, Roberto M. S. dos Reis, Luciana S. A. de Melo, Cid B. de Araújo, and Anderson S. L. Gomes  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1118-1123 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experiments on random lasers based on films of poly(methyl methacrylate) containing rhodamine 6G and silver nanoparticles (NPs). The films were deposited on an aluminum-coated substrate that provides reinjection of leaking photons. The results show strong dependence of the emission on the silver NPs’ density and smaller linewidth and threshold due to the feedback provided by the aluminum film. For comparison purposes, samples with TiO 2 NPs were also prepared, and no evidence of random lasers was obtained for the same experimental conditions. This demonstrates that higher optical gain for lasing is obtained using silver NPs mainly due to the contribution of localized surface plasmons in the NPs.

© 2011 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(160.5470) Materials : Polymers
(260.2160) Physical optics : Energy transfer
(290.4210) Scattering : Multiple scattering
(300.2530) Spectroscopy : Fluorescence, laser-induced
(310.0310) Thin films : Thin films

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2011
Manuscript Accepted: February 24, 2011
Published: April 15, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Christian Tolentino Dominguez, Rogério L. Maltez, Roberto M. S. dos Reis, Luciana S. A. de Melo, Cid B. de Araújo, and Anderson S. L. Gomes, "Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G," J. Opt. Soc. Am. B 28, 1118-1123 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Zh. Éksp. Teor. Fiz. 53, 1442–1447 (1967).
  2. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  3. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  4. D. S. Wiersma, “Physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008). [CrossRef]
  5. M. A. Noginov, Solid State Random Lasers (Springer, 2005).
  6. G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005). [CrossRef]
  7. O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006). [CrossRef]
  8. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008). [CrossRef]
  9. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009). [CrossRef]
  10. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  11. X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010). [CrossRef] [PubMed]
  12. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008). [CrossRef] [PubMed]
  13. A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010). [CrossRef]
  14. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003). [CrossRef]
  15. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001). [CrossRef] [PubMed]
  16. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35, 640–643 (1996). [CrossRef] [PubMed]
  17. P. C. de Oliveira, J. A. McGreevy, and N. M. Lawandy, “External feedback effects in high gain scattering media,” Opt. Lett. 22, 895–897 (1997). [CrossRef] [PubMed]
  18. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982). [CrossRef]
  19. A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010). [CrossRef]
  20. W. C. Bell and M. L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes,” J. Colloid Interface Sci. 242, 300–305 (2001). [CrossRef]
  21. H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).
  22. S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008). [CrossRef]
  23. H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999). [CrossRef]
  24. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002). [CrossRef] [PubMed]
  25. Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photon. Rev. 3, 221–233 (2009). [CrossRef]
  26. T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007). [CrossRef]
  27. O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006). [CrossRef]
  28. F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006). [CrossRef]
  29. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001). [CrossRef] [PubMed]
  30. C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27, 1204–1211 (2005). [CrossRef]
  31. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanomaterials,” Plasmonics 3, 127–150 (2008). [CrossRef]
  32. C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited