OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1146–1151

Ultraviolet polarization pulse shaping using sum-frequency generation

Marco Thomas Seidel, Zhengyang Zhang, Suxia Yan, and Howe-Siang Tan  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1146-1151 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the generation of amplitude-, phase-, and polarization-controlled femtosecond laser pulses tunable in the ultraviolet (UV) between 305 nm and 370 nm by nonlinear optical methods. Two delayed sets of individually amplitude- and phase-shaped pulse profiles in the visible are transferred into the UV via two independent sum-frequency generation (SFG) processes in two perpendicular oriented nonlinear crystals. The two resulting shaped UV light fields of orthogonal polarizations are temporally recombined via a birefringent material. Common-path geometry throughout the entire setup is ensured for interferometric phase stability. Examples for polarization pulse shaping around 360 nm are demonstrated with emphasis on the creation of interferometrically stable polarization-controlled optical pulse trains.

© 2011 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.5540) Ultrafast optics : Pulse shaping
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

Original Manuscript: January 20, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 4, 2011
Published: April 19, 2011

Marco Thomas Seidel, Zhengyang Zhang, Suxia Yan, and Howe-Siang Tan, "Ultraviolet polarization pulse shaping using sum-frequency generation," J. Opt. Soc. Am. B 28, 1146-1151 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007). [CrossRef] [PubMed]
  2. F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317(2007). [CrossRef]
  3. D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009). [CrossRef]
  4. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003). [CrossRef] [PubMed]
  5. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428(2008). [CrossRef] [PubMed]
  6. D. B. Strasfeld, Y. L. Ling, S.-H. Shim, and M. T. Zanni, “Tracking fiber formation in human islet amyloid polypetide with automated 2D-IR spectroscopy,” J. Am. Chem. Soc. 130, 6698–6699(2008). [CrossRef] [PubMed]
  7. C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17, 18788–18793 (2009). [CrossRef]
  8. M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265–11270 (2001). [CrossRef] [PubMed]
  9. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008). [CrossRef] [PubMed]
  10. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010). [CrossRef]
  11. T. Tanigawa, Y. Sakakibara, S. Fang, T. Sekikawa, and M. Yamashita, “Spatial light modulator of 648 pixels with liquid crystal transparent from ultraviolet to near-infrared and its chirp compensation application,” Opt. Lett. 34, 1696–1699(2009). [CrossRef] [PubMed]
  12. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441–444 (2005). [CrossRef]
  13. S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899–1901 (2006). [CrossRef] [PubMed]
  14. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711–714 (2003). [CrossRef]
  15. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, “Programmable amplitude- and phase modulated femtosecond laser pulses in the mid-infrared,” Opt. Lett. 27, 131–133(2002). [CrossRef]
  16. H.-S. Tan, E. Schreiber, and W. S. Warren, “High-resolution indirect pulse shaping by parametric transfer,” Opt. Lett. 27, 439–441 (2002). [CrossRef]
  17. R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803–805(2008). [CrossRef] [PubMed]
  18. D. S. N. Parker, A. D. G. Nunn, R. S. Minns, and H. H. Fielding, “Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tunable femtosecond pulse shapes in the deep ultraviolet,” Appl. Phys. B 94, 181–186 (2009). [CrossRef]
  19. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866–871 (2001). [CrossRef]
  20. P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519–526 (2007). [CrossRef]
  21. M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007). [CrossRef] [PubMed]
  22. M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007). [CrossRef]
  23. D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009). [CrossRef] [PubMed]
  24. M. T. Seidel, S. Yan, and H.-S. Tan, “Mid-infrared polarization pulse shaping by parametric transfer,” Opt. Lett. 35, 478–480(2010). [CrossRef] [PubMed]
  25. P. Schlup, J. Wilson, K. Hartinger, and R. A. Bartels, “Dispersion balancing of variable-delay monolithic pulse splitters,” Appl. Opt. 46, 5967–5973 (2007). [CrossRef] [PubMed]
  26. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007). [CrossRef] [PubMed]
  27. S. Linden, J. Kuhl, and H. Giessen, “Amplitude and phase characterization of weak blue ultrashort pulses by downconversion,” Opt. Lett. 24, 569–571 (1999). [CrossRef]
  28. P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” Opt. Lett. 33, 267–269 (2008). [CrossRef] [PubMed]
  29. M. T. Seidel, Z. Zhang, S. Yan, K. L. Wells, and H.-S. Tan are preparing a manuscript to be called “Polarization state characterization of ultraviolet femtosecond laser pulses.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited