OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1152–1160

Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO 2 -doped core photonic crystal fibers

B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1152-1160 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the impact of germanium oxide ( GeO 2 ) doping on the linear and nonlinear properties of photonic crystal fibers. We propose some design rules allowing a strong enhancement of the Raman and Kerr nonlinearities with little impact on the fiber dispersive properties. It is experimentally and numerically demonstrated that using GeO 2 -doped core photonic crystal fibers allows a significant enhancement of the soliton self-frequency shift as compared to pure silica photonic crystal fibers with comparable dispersion. We found that the high nonlinear coefficient (due to a good mode confinement) obtained in the GeO 2 -doped core fiber plays a more important role on the soliton self-frequency shift enhancement than the intrinsic Raman gain.

© 2011 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 31, 2011
Revised Manuscript: March 3, 2011
Manuscript Accepted: March 13, 2011
Published: April 19, 2011

B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Mélin, and A. Kudlinski, "Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers," J. Opt. Soc. Am. B 28, 1152-1160 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).
  3. F. Mitschke and L. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  4. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  5. P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991). [CrossRef]
  6. J. Lucek and K. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992). [CrossRef] [PubMed]
  7. B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987). [CrossRef]
  8. K. Blow, N. Doran, and D. Wood, “Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 5, 381–391 (1988). [CrossRef]
  9. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  10. The long-pulse pumping regime refers to cases in which the pump pulse duration ΔT is much longer than the MI oscillation period ΔTMI, given by ΔTMI=2π|β2|/(2γP), with β2 the second-order dispersion coefficient, γ the NL coefficient, and P the pump peak power. Cases in which ΔT is of the order of or less than ΔTMI correspond to the short-pulse pumping regime.
  11. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007). [CrossRef]
  12. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008). [CrossRef] [PubMed]
  13. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8. [CrossRef]
  14. D. Mogilevtsev, T. Birks, and P. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664(1998). [CrossRef]
  15. J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000). [CrossRef]
  16. N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  17. J. Ranka, R. Windeler, and A. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000). [CrossRef]
  18. T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific, 1987).
  19. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Telecommunication Systems (Academic, 2005).
  20. Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007). [CrossRef]
  21. Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009). [CrossRef] [PubMed]
  22. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007). [CrossRef]
  23. V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009). [CrossRef] [PubMed]
  24. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Melin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009). [CrossRef] [PubMed]
  25. J. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978). [CrossRef]
  26. F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983). [CrossRef]
  27. J. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984). [CrossRef] [PubMed]
  28. N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978). [CrossRef]
  29. P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4. [PubMed]
  30. T. Nakashima, S. Seikai, and M. Nakazawa, “Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers,” Opt. Lett. 10, 420–422 (1985). [CrossRef] [PubMed]
  31. S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989). [CrossRef]
  32. T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000). [CrossRef]
  33. J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).
  34. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive-index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995). [CrossRef] [PubMed]
  35. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981). [CrossRef]
  36. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Magi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  37. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). [CrossRef] [PubMed]
  38. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005). [CrossRef] [PubMed]
  39. B. Barviau, S. Randoux, and P. Suret, “Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber,” Opt. Lett. 31, 1696–1698(2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited