OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1161–1167

Feedback-controlled recording and fixing of photorefractive holograms in reflection geometry on lithium niobate crystals

Emilio J. Ambite and Luis Arizmendi  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1161-1167 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A digital feedback control loop system is used to produce high-efficiency photorefractive gratings in reflection geometry for volume narrow band reflection filters. The system allowed hologram recording up to saturation. Several strategies are investigated to obtain higher fixed efficiency. A double controlled recording/fixing process with stationary fringes produced holograms with fixed efficiency higher than 90%. This method is interesting for producing reproducible high-reflectivity narrow band reflection filters of customized wavelength in the visible and near-infrared regions.

© 2011 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(230.1480) Optical devices : Bragg reflectors
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:

Original Manuscript: January 19, 2011
Revised Manuscript: March 7, 2011
Manuscript Accepted: March 25, 2011
Published: April 19, 2011

Emilio J. Ambite and Luis Arizmendi, "Feedback-controlled recording and fixing of photorefractive holograms in reflection geometry on lithium niobate crystals," J. Opt. Soc. Am. B 28, 1161-1167 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004). [CrossRef]
  2. R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994). [CrossRef]
  3. V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994). [CrossRef]
  4. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003). [CrossRef]
  5. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998). [CrossRef]
  6. M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.
  7. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001). [CrossRef]
  8. I. Nee, O. Beyer, M. Muller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593–1602 (2003). [CrossRef]
  9. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006). [CrossRef]
  10. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007). [CrossRef]
  11. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813(1999). [CrossRef]
  12. L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt. 48, 6973–6979(2009). [CrossRef] [PubMed]
  13. J. Frejlich, Photorefractive materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007). [PubMed]
  14. J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998). [CrossRef]
  15. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005). [CrossRef]
  16. J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007). [CrossRef] [PubMed]
  17. J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008). [CrossRef] [PubMed]
  18. M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20, 1643–1648(2003). [CrossRef]
  19. M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003). [CrossRef]
  20. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004). [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  23. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992). [CrossRef]
  24. D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002). [CrossRef]
  25. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995). [CrossRef] [PubMed]
  26. R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008). [CrossRef]
  27. M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–263 (1998). [CrossRef]
  28. E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited