OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1187–1193

Zero-effective-phase bandgaps in photonic multilayers: analytic expressions for band-edge frequencies and broadband omnidirectional reflection

Yuanjiang Xiang, Xiaoyu Dai, Shuangchun Wen, Zhixiang Tang, and Dianyuan Fan  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1187-1193 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001187


View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The analytic expressions for frequency locations of the zero-effective-phase photonic band edge of the photonic multilayers containing single-negative materials are derived based on the effective medium theory. By adopting the derived band-edge formula, the properties, especially the thickness- and angular-dependence of the zero- effective-phase photonic bandgap are investigated in detail. The obtained results are consistent with the predictions in the transfer-matrix method. Moreover, the potential application of the band-edge formula in extending zero-effective-phase photonic bandgaps is proposed, which is verified in the photonic heterostructure realized by using composite right-/left-handed transmission line.

© 2011 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: September 28, 2010
Revised Manuscript: February 24, 2011
Manuscript Accepted: March 2, 2011
Published: April 20, 2011

Citation
Yuanjiang Xiang, Xiaoyu Dai, Shuangchun Wen, Zhixiang Tang, and Dianyuan Fan, "Zero-effective-phase bandgaps in photonic multilayers: analytic expressions for band-edge frequencies and broadband omnidirectional reflection," J. Opt. Soc. Am. B 28, 1187-1193 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2063(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). [CrossRef]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef] [PubMed]
  5. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006). [CrossRef]
  6. V. Kochergin, Omnidirectional Optical Filters (Kluwer, 2003).
  7. Y. H. Lu, M. D. Huang, S. Y. Park, P. J. Kim, T. U. Nahm, Y. P. Lee, and J. Y. Rhee, “Controllable switching behavior of defect modes in one-dimensional heterostructure photonic crystals,” J. Appl. Phys. 101, 036110 (2007). [CrossRef]
  8. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  9. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007). [CrossRef]
  10. J. S. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef] [PubMed]
  11. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003). [CrossRef]
  12. Y. J. Xiang, X. Y. Dai, S. C. Wen, and D. Y. Fan, “Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials,” Phys. Rev. E 76, 056604 (2007). [CrossRef]
  13. Y. J. Xiang, X. Y. Dai, S. C. Wen, and D. Y. Fan, “Independently tunable omnidirectional multichannel filters based on the fractal multilayers containing negative-index materials,” Opt. Lett. 33, 1255–1257 (2008). [CrossRef] [PubMed]
  14. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004). [CrossRef]
  15. L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004). [CrossRef]
  16. E. Silvestre, R. A. Depine, M. L. Martínez-Ricci, and J. A. Monsoriu, “Role of dispersion on zero-average-index bandgaps,” J. Opt. Soc. Am. B 26, 581–586 (2009). [CrossRef]
  17. J. A. Monsoriu, R. A. Depine, M. L. Martínez-Ricci, E. Silvestre, and P. Andrés, “m-bonacci metamaterial multilayers: location of the zero-average index bandgap edges,” Opt. Lett. 34, 3172–3174 (2009). [CrossRef] [PubMed]
  18. H. Y. Zhang, Y. P. Zhang, W. H. Liu, Y. Q. Wang, and J. G. Yang, “Zero-averaged refractive-index gaps extension by using photonic heterostructures containing negative-index materials,” Appl. Phys. B 96, 67–70 (2009). [CrossRef]
  19. S. K. Awasthi, U. Malaviya, and S. P. Ojha, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B 23, 2566–2571 (2006). [CrossRef]
  20. X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostructures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  22. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  23. S. M. Wang, C. J. Tang, T. Pan, and L. Gao, “Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer,” Phys. Lett. A 351, 391–397(2006). [CrossRef]
  24. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications(Wiley, 2006).
  25. L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ε-negative and μ-negative materials,” Phys. Rev. E 74, 056615 (2006). [CrossRef]
  26. Y. H. Chen, “Unusual transmission bands of one-dimensional photonic crystals containing single-negative materials,” Opt. Express 17, 20333–20341 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited