OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1200–1203

Optimal concentration of light in turbid materials

E. G. van Putten, A. Lagendijk, and A. P. Mosk  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1200-1203 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In turbid materials it is impossible to concentrate light into a focus with conventional optics. Recently, it has been shown that the intensity on a dye-doped probe inside a turbid material can be enhanced by spatially shaping the wavefront of light before it enters a turbid medium. Here we show that this enhancement is due to concentration of light energy to a spot much smaller than a wavelength. We focus light on a dye-doped probe sphere that is hidden by an opaque layer. The light ( λ = 532 nm ) is optimally concentrated to a focal area smaller than 0.037 μm 2 . The focus can be substantially smaller than the used probe. We use a comparison between the emission and excitation intensity to show the light is concentrated to a spot below the resolution of our oil-immersion objective. The results are in good agreement with an optimal concentration of linearly or elliptically polarized light.

© 2011 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

ToC Category:

Original Manuscript: December 9, 2010
Revised Manuscript: March 14, 2011
Manuscript Accepted: March 21, 2011
Published: April 21, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

E. G. van Putten, A. Lagendijk, and A. P. Mosk, "Optimal concentration of light in turbid materials," J. Opt. Soc. Am. B 28, 1200-1203 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Sebbah, Waves and Imaging through Complex Media (Kluwer Academic, 1999).
  2. A. Ishimaru, “Limitation on image resolution imposed by a random medium,” Appl. Opt. 17, 348–352 (1978). [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991). [CrossRef] [PubMed]
  4. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  6. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005). [CrossRef] [PubMed]
  7. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966). [CrossRef]
  8. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008). [CrossRef]
  9. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008). [CrossRef] [PubMed]
  10. C. Draeger and M. Fink, “One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity,” Phys. Rev. Lett. 79, 407–410 (1997). [CrossRef]
  11. B. E. Henty and D. D. Stancil, “Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays,” Phys. Rev. Lett. 93, 243904 (2004). [CrossRef]
  12. B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168–2171 (1986). [CrossRef] [PubMed]
  13. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010). [CrossRef]
  14. O. L. Muskens and A. Lagendijk, “Broadband enhanced backscattering spectroscopy of strongly scattering media,” Opt. Express 16, 1222–1231 (2008). [CrossRef] [PubMed]
  15. M. U. Vera and D. J. Durian, “Angular distribution of diffusely transmitted light,” Phys. Rev. E 53, 3215–3224 (1996). [CrossRef]
  16. J. G. Rivas, D. H. Dau, A. Imhof, R. Sprik, B. P. J. Bret, P. M. Johnson, T. W. Hijmans, and A. Lagendijk, “Experimental determination of the effective refractive index in strongly scattering media,” Opt. Commun. 220, 17–21 (2003). [CrossRef]
  17. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008). [CrossRef]
  18. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef] [PubMed]
  19. P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934). [CrossRef]
  20. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley, 2000).
  22. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  23. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959). [CrossRef]
  24. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010). [CrossRef] [PubMed]
  25. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010). [CrossRef] [PubMed]
  26. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and Demetri Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010). [CrossRef] [PubMed]
  27. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010). [CrossRef]
  28. V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. Lagendijk, “Near-field short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003). [CrossRef] [PubMed]
  29. A. Apostol and A. Dogariu, “Spatial correlations in the near field of random media,” Phys. Rev. Lett. 91, 093901 (2003). [CrossRef] [PubMed]
  30. R. Carminati, “Subwavelength spatial correlations in near-field speckle patterns,” Phys. Rev. Lett. 81, 053804 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited