OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1213–1223

Multipole methods for nanoantennas design: applications to Yagi-Uda configurations

B. Stout, A. Devilez, B. Rolly, and N. Bonod  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1213-1223 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001213


View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed formalism allowing analytical calculations of the radiative properties of nanoantennas. This formalism does not rely on dipole approximations and utilizes multipolar multiple-scattering theory. The improvement in both accuracy and calculation speeds offered by this formulation provides significant advantages that are used in this work to study Yagi-Uda-type nanoantennas. We provide a study that questions the necessity of the reflector particle in nanoantennas.

© 2011 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: November 17, 2010
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 28, 2011
Published: April 21, 2011

Citation
B. Stout, A. Devilez, B. Rolly, and N. Bonod, "Multipole methods for nanoantennas design: applications to Yagi-Uda configurations," J. Opt. Soc. Am. B 28, 1213-1223 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984). [CrossRef]
  2. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002). [CrossRef]
  3. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004). [CrossRef]
  4. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  6. R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006). [CrossRef]
  7. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007). [CrossRef]
  8. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007). [CrossRef] [PubMed]
  9. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657(2009). [CrossRef]
  10. A. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009). [CrossRef] [PubMed]
  11. J. W. Liaw, C. S. Chen, and J. H. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transfer 111, 454–465 (2010). [CrossRef]
  12. H. Aouani, O. Mahboud, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011). [CrossRef] [PubMed]
  13. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000). [CrossRef]
  14. H. F. Hofman, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi-Uda antenna,” New J. Phys. 9, 217(2007). [CrossRef]
  15. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007). [CrossRef]
  16. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866(2008). [CrossRef] [PubMed]
  17. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photon. 2, 234–237 (2008). [CrossRef]
  18. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009). [CrossRef]
  19. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical antennas,” Nano Lett. 9, 2343–2349 (2009). [CrossRef] [PubMed]
  20. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano. 4, 3390–3396 (2010). [CrossRef] [PubMed]
  21. N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010). [CrossRef]
  22. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010). [CrossRef]
  23. A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  24. M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19, 4159–4174 (1980). [CrossRef] [PubMed]
  25. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76, 1681–1684 (1982). [CrossRef]
  26. Y. Kim, P. Leung, and T. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988). [CrossRef]
  27. G. C. des Francs, A. Bouhelier, E. Finot, J. Weeber, A. Dereux, and E. Dujardin, “Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express 16, 17654–17666 (2008). [CrossRef]
  28. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1990).
  29. B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002). [CrossRef]
  30. B. Stout, J. Auger, and A. Devilez, “Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25, 2549–2557 (2008). [CrossRef]
  31. J.-C. Auger, V. Martinez, and B. Stout, “Absorption and scattering properties of dense ensembles of non-spherical particles,” J. Opt. Soc. Am. A 24, 3508–3516 (2007). [CrossRef]
  32. L. Novotny and B. Hecht, “Light emission and optical interactions in nanoscale environments,” in Principles of Nano-Optics (Cambridge University, 2006), pp. 250–303.
  33. L. Tsang and J. A. Kong, “Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism,” J. Appl. Phys. 51, 3465–3485 (1980). [CrossRef]
  34. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951). [CrossRef]
  35. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  37. Y. P. Pellegrini, B. Stout, and P. Thibaudeau, “Off-shell mean-field electromagnetic T-matrix of finite size spheres and fuzzy scatterers,” J. Phys. Condens. Matter 9, 177–191 (1997). [CrossRef]
  38. P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys. 70, 447–466(1998). [CrossRef]
  39. A. Lagendijk and B. Tiggelin, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996). [CrossRef]
  40. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1960).
  41. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons & Atoms: Introduction to Quantum Electrodynamics(Wiley, 1997).
  42. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited