OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1224–1230

Optical properties of a metal nanosphere with spatially dispersive permittivity

Vitaly V. Datsyuk and Oleg M. Tovkach  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1224-1230 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To model elastic and inelastic light scattering on a metal nanosphere with spatially dispersive permittivity, an extension of the Lorenz–Mie theory is applied. The theory takes into account longitudinal vector spherical harmonics inside the sphere and determines the generalized Mie coefficients using a condition of vanishing electron flow through the sphere surface. In general, this condition is distinct from the conventional additional boundary condition of the continuity of the normal component of the electric field. Therefore, contrary to the common belief, the problem of divergence of the local density of electromagnetic states at the surface of an absorbing sphere is not solved by considering the spatial dispersion of the permittivity. We illustrate the theory by a study of the optical properties of a silver nanosphere using a hydrodynamic model for the dielectric function of the electron gas. Predictions of the nonlocal theory differ markedly from those of the local one if the sphere’s radius or the distance to the surface is smaller than a few nanometers. In particular, we demonstrate a shift of the Fröhlich resonance of nanometer-sized Ag particles caused by the spatial dispersion. Excitation of high-order spherical harmonics in larger particles is discussed. We show how the spatial dispersion decreases the rate of fluorescence quenching in close proximity to the particle surface.

© 2011 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(260.2510) Physical optics : Fluorescence
(290.4020) Scattering : Mie theory
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: February 15, 2011
Revised Manuscript: March 13, 2011
Manuscript Accepted: March 16, 2011
Published: April 25, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Vitaly V. Datsyuk and Oleg M. Tovkach, "Optical properties of a metal nanosphere with spatially dispersive permittivity," J. Opt. Soc. Am. B 28, 1224-1230 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]
  2. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Spontaneous emission of an atom in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001). [CrossRef]
  3. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001). [CrossRef] [PubMed]
  4. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004). [CrossRef]
  5. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  6. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16, 55–62 (2005). [CrossRef] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  8. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  9. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007). [CrossRef] [PubMed]
  10. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007). [CrossRef]
  11. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  12. K.Kneipp, M.Moskovits, and H.Kneipp, eds., Surface-Enhanced Raman Scattering. Physics and Applications (Springer, 2006). [CrossRef]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  14. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007). [CrossRef]
  15. E. C. Le Ru, P. G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, “Mechanisms of spectral profile modification in surface-enhanced fluorescence,” J. Phys. Chem. C 111, 16076–16709(2007). [CrossRef]
  16. E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2008).
  17. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008). [CrossRef]
  18. C. M. Galloway, P. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009). [CrossRef] [PubMed]
  19. H. Mertens and A. Polman, “Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302(2009). [CrossRef]
  20. V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577(2009). [CrossRef]
  21. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  22. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  23. R. Carminati, J.-J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006). [CrossRef]
  24. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15, 12806–12817 (2007). [CrossRef] [PubMed]
  25. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008). [CrossRef]
  26. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the nearfield of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express 16, 17654–17666 (2008). [CrossRef] [PubMed]
  27. J. B. Khurgin and G. Sun, “Enhancement of optical properties of nanoscaled objects by metal nanoparticles,” J. Opt. Soc. Am. B 26, B83–B95 (2009). [CrossRef]
  28. Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. B. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express 18, 4316–4328 (2010). [CrossRef] [PubMed]
  29. E. Castanié, M. Boffety, and R. Carminati, “Fluorescence quenching by a metal nanoparticle in the extreme near-field regime,” Opt. Lett. 35, 291–293 (2010). [CrossRef] [PubMed]
  30. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010). [CrossRef] [PubMed]
  31. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  33. H. T. Dung, L. Knöll, and D.-G. Welsch, “Decay of an excited atom near an absorbing microsphere,” Phys. Rev. A 64, 013804 (2001). [CrossRef]
  34. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004). [CrossRef] [PubMed]
  35. R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: Nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987). [CrossRef]
  36. P. T. Leung, “Decay of molecules at spherical surfaces: nonlocal effects,” Phys. Rev. B 42, 7622–7625 (1990). [CrossRef]
  37. J. Vielma and P. T. Leung, “Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle,” J. Chem. Phys. 126, 194704 (2007). [CrossRef] [PubMed]
  38. P. T. Leung and M. H. Hider, “Nonlocal electrodynamic modeling of frequency shifts for molecules at rough surfaces,” J. Chem. Phys. 98, 5019–5022 (1993). [CrossRef]
  39. M. H. Hider and P. T. Leung, “Nonlocal electrodynamic modeling of fluorescence characteristics for molecules in a spherical cavity,” Phys. Rev. B 66, 195106 (2002). [CrossRef]
  40. P. T. Leung and W. S. Tse, “Nonlocal electrodynamic effect on the enhancement factor for surface enhanced Raman scattering,” Solid State Commun. 95, 39–44 (1995). [CrossRef]
  41. Z. E. Goude and P. T. Leung, “Surface enhanced Raman scattering from metallic nanoshells with nonlocal dielectric response,” Solid State Commun. 143, 416–420 (2007). [CrossRef]
  42. R. Chang, P. T. Leung, S. H. Lin, and W. S. Tse, “Surface-enhanced Raman scattering at cryogenic substrate temperatures,” Phys. Rev. B 62, 5168–5173 (2000). [CrossRef]
  43. R. Chang and P. T. Leung, “Nonlocal effects on optical and molecular interactions with metallic nanoshells,” Phys. Rev. B 73, 125438 (2006). [CrossRef]
  44. C. Girard, “Multipolar propagators near a corrugated surface: implication for local-probe microscopy,” Phys. Rev. B 45, 1800–1810 (1992). [CrossRef]
  45. B. Labani, M. Boustimi, and J. Baudon, “van der Waals interaction between a molecule and a spherical cavity in a metal: nonlocality and anisotropy effects,” Phys. Rev. B 55, 4745–4750 (1997). [CrossRef]
  46. A. Pack, M. Hietschold, and R. Wannemacher, “Failure of local Mie theory: optical spectra of colloidal aggregates,” Opt. Commun. 194, 277–287 (2001). [CrossRef]
  47. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15, 4253–4267 (2007). [CrossRef] [PubMed]
  48. J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  49. A. Yildiz, “Scattering of a plasma wave from a plasma sphere,” Nuovo Cimento 30, 5740–5765 (1963). [CrossRef]
  50. V. B. Gil’denburg and I. G. Kondrat’ev, “Diffraction of electromagnetic waves by a bounded plasma in the presence of spatial dispersion,” Radiotekh. Elektron. (Moscow) 10, 658–664(1965).
  51. G. S. Agarwal and S. V. O’Neil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B 28, 487–493(1983). [CrossRef]
  52. I. A. Larkin, M. I. S. M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004). [CrossRef]
  53. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987). [CrossRef]
  54. J. Zhu, K. Zhu, and L. Huang, “Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B,” Phys. Lett. A 372, 3283–3288 (2008). [CrossRef]
  55. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287(1984). [CrossRef]
  56. B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B 24, 554–561 (1981). [CrossRef]
  57. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008). [CrossRef] [PubMed]
  58. V. V. Datsyuk, “A generalization of the Mie theory for a sphere with spatially dispersive permittivity,” Ukr. J. Phys. 56, 122–129(2011).
  59. A. Pack, “Current problems in nano-optics,” Dr. rer. nat.(Technischen Universität Chemnitz, Chemnitz, Germany2001).
  60. R. Ruppin, “Mie theory with spatial dispersion,” Opt. Commun. 30, 380–382 (1979). [CrossRef]
  61. R. Ruppin, “Optical properties of small metal spheres,” Phys. Rev. B 11, 2871–2876 (1975). [CrossRef]
  62. A. Moroz, “Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell,” Ann. Phys. 315, 352–418 (2005). [CrossRef]
  63. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometer scale,” Nature 418, 159–162 (2002). [CrossRef] [PubMed]
  64. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372(2001). [CrossRef]
  65. J. D. Eversole and H. P. Broida, “Size and shape effects in light scattering from small silver, copper, and gold particles,” Phys. Rev. B 15, 1644–1655 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited