OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1231–1237

Modeling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystals

Matteo Conforti, Fabio Baronio, and Costantino De Angelis  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1231-1237 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001231


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive model to describe the propagation of single-cycle and broadband optical pulses in anisotropic, dispersive, and nonlinear materials. Two nonlinear coupled wave equations describe the dynamics and interactions of optical pulses in uniaxial second-order nonlinear materials. The equations are first order in the propagation coordinate and are valid for arbitrarily wide pulse bandwidth, providing an accurate modeling of the evolution of ultrabroadband pulses also when the separation into different coupled frequency components is not possible or not profitable. We exploit this model to simulate recently observed femtosecond single-cycle multiterahertz transients in gallium selenide and to predict harmonic generation and spectral broadening in the visible and mid-infrared in lithium niobate.

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.2250) Ultrafast optics : Femtosecond phenomena
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 8, 2011
Revised Manuscript: March 15, 2011
Manuscript Accepted: March 17, 2011
Published: April 25, 2011

Citation
Matteo Conforti, Fabio Baronio, and Costantino De Angelis, "Modeling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystals," J. Opt. Soc. Am. B 28, 1231-1237 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron–hole plasma,” Nature 414, 286–289 (2001). [CrossRef] [PubMed]
  2. G. Gunter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light–matter interaction,” Nature 458, 178–181 (2009). [CrossRef] [PubMed]
  3. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591(2000). [CrossRef]
  4. C. Chudoba, E. Nibbering, and T. Elsaesser, “Site-specific excited-state solute-solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013(1998). [CrossRef]
  5. E. J. Heilweil, “Ultrafast glimpses at water and ice,” Science 283, 1467–1468 (1999). [CrossRef]
  6. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997). [CrossRef]
  7. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003). [CrossRef]
  8. D. Polli, L. Luer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78, 103108(2007). [CrossRef] [PubMed]
  9. C. Manzoni, G. Cerullo, and S. De Silvestri, “Ultrabroadband self-phase-stabilized pulses by difference-frequency generation,” Opt. Lett. 29, 2668–2670 (2004). [CrossRef] [PubMed]
  10. F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, and R. Huber, “Single-cycle multiterahertz transients with peak fields above 10 MV/cm,” Opt. Lett. 35, 2645–2647 (2010). [CrossRef] [PubMed]
  11. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the mid-infrared by optical parametric amplifiers,” J. Opt. 12, 013001 (2010). [CrossRef]
  12. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  13. P. Kinsler and G. H. C. New, “Few-cycle pulse propagation,” Phys. Rev. A 67, 023813 (2003). [CrossRef]
  14. J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006). [CrossRef] [PubMed]
  15. M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999). [CrossRef]
  16. A. V. Housakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef]
  17. M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902 (2002). [CrossRef]
  18. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). [CrossRef]
  19. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15, 5382–5387 (2007). [CrossRef] [PubMed]
  20. P. Kinsler, S. B. P. Radnor, and G. H. C. New, “Theory of directional pulse propagation,” Phys. Rev. A 72, 063807 (2005). [CrossRef]
  21. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81, 013819 (2010). [CrossRef]
  22. A. Kumar, “Ultrashort pulse propagation in a cubic medium including the Raman effect,” Phys. Rev. A 81, 013807 (2010). [CrossRef]
  23. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010). [CrossRef]
  24. M. Conforti, F. Baronio, and C. De Angelis, “Ultra-broadband optical phenomena in quadratic nonlinear media,” IEEE Photonics J. 2, 600–610 (2010). [CrossRef]
  25. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  26. J. E. Midwinter and J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization,” Br. J. Appl. Phys. 16, 1135–1142 (1965). [CrossRef]
  27. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  28. M. Conforti, F. Baronio, A. Degasperis, and S. Wabnitz, “Parametric frequency conversion of short optical pulses controlled by a CW background,” Opt. Express 15, 12246–12251 (2007). [CrossRef] [PubMed]
  29. F. Baronio, M. Conforti, A. Degasperis, and S. Wabnitz, “Three-wave trapponic solitons for tunable high-repetition rate pulse train generation,” IEEE J. Quantum Electron. 44, 542–546 (2008). [CrossRef]
  30. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002). [CrossRef]
  31. N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390(2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited