OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1245–1251

Quantum phase transition of light in a finite size Dicke model with Kerr-type nonlinearity

Xiaoyong Guo, Zhongzhou Ren, and Zimeng Chi  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1245-1251 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001245


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we investigate a ground state quantum phase transition of nonlinear light in a generalized finite size Dicke model, which includes a Kerr-type nonlinear field term along with the counter-rotating interaction. The numerical solution is presented. We show that, in the ground state, the intracavity photons exhibit a third-order QPT from the bunching to the antibunching quantum phase. This phase transition stems from the competition between the atom-induced coupling and the effective photon–photon interaction. We also demonstrate that the general properties of the phase transition do not qualitatively alter by the size of the atomic ensemble and by the detuning between atoms and light, as well.

© 2011 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: March 13, 2011
Manuscript Accepted: March 28, 2011
Published: April 25, 2011

Citation
Xiaoyong Guo, Zhongzhou Ren, and Zimeng Chi, "Quantum phase transition of light in a finite size Dicke model with Kerr-type nonlinearity," J. Opt. Soc. Am. B 28, 1245-1251 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997). [CrossRef]
  2. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006). [CrossRef]
  3. M. J. Hartman, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006). [CrossRef]
  4. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008). [CrossRef]
  5. S. C. Lei, T. K. Ng, and R. K. Lee, “Photonic analogue of Josephson effect in a dual-species optical-lattice cavity,” Opt. Express 18, 14586–14597 (2010). [CrossRef] [PubMed]
  6. X. Guo and Z. Ren, “Photonic tunneling effect between two coupled single-atom laser cavities imbedded within a photonic crystal platform,” Phys. Rev. A 83, 013809 (2011). [CrossRef]
  7. C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003). [CrossRef] [PubMed]
  8. N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004). [CrossRef] [PubMed]
  9. S. Morrison and A. S. Parkins, “Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED,” Phys. Rev. Lett. 100, 040403 (2008). [CrossRef] [PubMed]
  10. J. Larson, “Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model,” Europhys. Lett. 90, 54001 (2010). [CrossRef]
  11. J. Larson and M. Horsdal, “Photonic Josephson effect, phase transitions, and chaos in optomechanical systems,” arXiv:1009.2945 (2010).
  12. J. Reslen, L. Quiroga, and N. F. Johnson, “Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement,” Europhys. Lett. 69, 8–14 (2005). [CrossRef]
  13. G. Liberti, F. Plastina, and F. Piperno, “Scaling behavior of the adiabatic Dicke model,” Phys. Rev. A 74, 022324(2006). [CrossRef]
  14. J. Vidal and S. Dusuel, “Finite-size scaling exponents in the Dicke model,” Europhys. Lett. 74, 817–822 (2006). [CrossRef]
  15. D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010). [CrossRef] [PubMed]
  16. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954). [CrossRef]
  17. K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Ann. Phys. 76, 360–404 (1973). [CrossRef]
  18. Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973). [CrossRef]
  19. K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010). [CrossRef] [PubMed]
  20. Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010). [CrossRef]
  21. B. M. Rodríguez-Lara and R. K. Lee, “Quantum phase transition of nonlinear light in the finite size Dicke Hamiltonian,” J. Opt. Soc. Am. B 27, 2443–2450 (2010). [CrossRef]
  22. P. D. Drummond and D. F. Walls, “Quantum theory of optical bistability. I: nonlinear polarizability model,” J. Phys. A 13, 725–741 (1980). [CrossRef]
  23. S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010). [CrossRef]
  24. B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).
  25. P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72 (2010). [CrossRef] [PubMed]
  26. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  27. M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence(Springer-Verlag, 2000).
  28. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  29. X. Guo and S. Lü, “Controllable optical bistability in photonic-crystal one-atom laser,” Phys. Rev. A 80, 043826 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited