OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1300–1307

Design and analysis of plasmonic filters based on stubs

Sayyed Reza Mirnaziry, Amir Setayesh, and Mohammad Sadegh Abrishamian  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1300-1307 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we describe characteristics of plasmonic filters based on stubs coupled perpendicularly to metal–insulator–metal waveguides. To achieve a desirable filter, a designing procedure is proposed based on impedance curves, which lead to responses with great accordance to those obtained by numeric techniques. We study the impact of stub lengths and distance between stubs on bandgap width and filter sharpening. In addition, we illustrate the existence of trade-off between filter dimensions and filter parameters, which lead to a discussion about advantages and disadvantages of these structures. Validation of analytic results is confirmed with the finite-difference time-domain method.

© 2011 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: October 18, 2010
Revised Manuscript: January 31, 2011
Manuscript Accepted: March 18, 2011
Published: April 28, 2011

Sayyed Reza Mirnaziry, Amir Setayesh, and Mohammad Sadegh Abrishamian, "Design and analysis of plasmonic filters based on stubs," J. Opt. Soc. Am. B 28, 1300-1307 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003). [CrossRef]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature 2, 229–232 (2003). [CrossRef]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  5. D. F. P. Pile and D. K. Gramotev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004). [CrossRef] [PubMed]
  6. D. K. Gramotev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel Plasmon-polaritons in triangular,” Appl. Phys. Lett. 85, 6323–6325 (2004). [CrossRef]
  7. D. K. Gramotev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010). [CrossRef]
  8. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006). [CrossRef]
  9. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon–polaritons metal,” Opt. Express 14, 2932–2937(2006). [CrossRef] [PubMed]
  10. A. Setayesh, S. R. Mirnaziry, and M. S. Abrishamian, “Numerical investigation of tunable band-pass plasmonic filter with hollow-core ring resonator,” J. Opt. 13035004 (2011). [CrossRef]
  11. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbragge, Y. Zhu, M. Sun, V. Van, J. Peter, E. J. Geluk, F. Karouta, Y.-S. Oei, N. Richard, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef] [PubMed]
  12. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009). [CrossRef]
  13. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325(2008). [CrossRef] [PubMed]
  14. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009). [CrossRef] [PubMed]
  15. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmmonic waveguides with stub structures,” Opt. Express 18, 6191–6204 (2010). [CrossRef] [PubMed]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinenann, 1984).
  18. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  19. M. A. Parker, Physics of Optoelectronics (CRC Press, 2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited