OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1335–1338

Image transfer with subwavelength resolution to metal–dielectric interface

Varat Intaraprasonk, Zongfu Yu, and Shanhui Fan  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1335-1338 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In image transfer, one aims to reproduce at an image plane the field distribution of the field at the source plane. We consider a near-field image transfer scheme where an image with subwavelength resolution can be transferred to a metal–dielectric interface. In this scheme, the presence of a surface plasmon polariton provides a large wave vector range where the transfer function is flat, thus enabling the image transfer with subwavelength resolution.

© 2011 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optics at Surfaces

Original Manuscript: October 19, 2010
Revised Manuscript: February 3, 2011
Manuscript Accepted: March 2, 2011
Published: April 29, 2011

Varat Intaraprasonk, Zongfu Yu, and Shanhui Fan, "Image transfer with subwavelength resolution to metal–dielectric interface," J. Opt. Soc. Am. B 28, 1335-1338 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005). [CrossRef] [PubMed]
  3. D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004). [CrossRef]
  4. R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004). [CrossRef]
  5. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009). [CrossRef]
  6. D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005). [CrossRef]
  7. D. Shao and S. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13, 6964–6973 (2005). [CrossRef] [PubMed]
  8. M. Arnold and R. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007). [CrossRef] [PubMed]
  9. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007). [CrossRef] [PubMed]
  10. V. Intaraprasonk and S. Fan, “Wave-vector space picture for radiationless focusing and beaming,” Opt. Lett. 34, 2967–2969(2009). [CrossRef] [PubMed]
  11. R. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974). [CrossRef]
  12. E.D.Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  13. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290(2004). [CrossRef] [PubMed]
  14. C. Moore, R. Blaikie, and M. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009). [CrossRef] [PubMed]
  15. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  16. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef] [PubMed]
  17. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004). [CrossRef] [PubMed]
  18. X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010). [CrossRef]
  19. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008). [CrossRef] [PubMed]
  20. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef] [PubMed]
  21. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited