OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 977–981

Efficient generation of far-infrared radiation from a periodically poled LiNbO 3 waveguide based on surface-emitting geometry

Yujie J. Ding  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 977-981 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000977


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate efficient generation of far-infrared (far-IR) radiation in 13 30 μm based on difference-frequency generation in a periodically poled LiNbO 3 waveguide. The efficient conversion is made possible by utilizing a surface-emitting geometry under which the two incoming optical waves propagate along a waveguide, whereas the far-IR radiation is emitted from the waveguide surface. Under such a configuration, we can exploit the enhancements to the second-order nonlinear coefficients due to polariton resonances in the far-IR region. Based on our estimates, the average output power is expected to reach 2.1 mW .

© 2011 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 17, 2011
Manuscript Accepted: February 21, 2011
Published: April 4, 2011

Citation
Yujie J. Ding, "Efficient generation of far-infrared radiation from a periodically poled LiNbO3 waveguide based on surface-emitting geometry," J. Opt. Soc. Am. B 28, 977-981 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006). [CrossRef]
  2. B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009). [CrossRef]
  3. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009). [CrossRef]
  4. W. Shi, Y. J. Ding, K. Vodopyanov, and N. Fernelius, “Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  5. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002). [CrossRef]
  6. D. N. Nikogosyan, Nonlinear Optical Crystals, (Springer, 2005).
  7. K. L. Vodopyanov and P. G. Schunemann, “Efficient difference-frequency generation of 7–20 μm radiation in CdGeAs2,” Opt. Lett. 23, 1096–1098 (1998). [CrossRef]
  8. K. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in a single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002). [CrossRef]
  9. V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008). [CrossRef]
  10. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17, 14395–14404 (2009). [CrossRef] [PubMed]
  11. C. Liberale, V. Degiorgio, M. Marangoni, G. Galzerano, and R. Ramponi, “Measurement of the nonlinear phase shift induced by cascaded interactions in a periodically poled lithium niobate waveguide,” Opt. Lett. 30, 2448–2450 (2005). [CrossRef] [PubMed]
  12. M. Bache and F. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010). [CrossRef]
  13. P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999). [CrossRef]
  14. S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford, Calif., Microwave Lab. Rep. 1851, 1970.
  15. J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009). [CrossRef]
  16. R. Song, Y. J. Ding, and I. B. Zotova, “Fingerprinting malathion vapor: a simulant for VX nerve agent,” Proc. SPIE 6949, 694903 (2008). [CrossRef]
  17. H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999). [PubMed]
  18. T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).
  19. C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), p. 98.
  20. G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000). [CrossRef] [PubMed]
  21. G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003). [CrossRef]
  22. J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003). [CrossRef] [PubMed]
  23. A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004). [CrossRef] [PubMed]
  24. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001). [CrossRef]
  25. Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005). [CrossRef]
  26. E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 695–702.
  27. Y. J. Ding, “Efficient generation of high-frequency THz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett. 35, 262–264 (2010). [CrossRef] [PubMed]
  28. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically-poled LiNbO3,” Opt. Lett. 21, 591–593 (1996). [CrossRef] [PubMed]
  29. T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited