OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 994–1001

Broadband electromagnetic transparency by graded metamaterials: scattering cancellation scheme

L. Sun and K. W. Yu  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 994-1001 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000994


View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic scattering by a radially inhomogeneous isotropic metamaterial sphere whose electric permittivity is described by the lossless graded Drude model is studied according to the generalized Mie theory in full-wave condition. The distribution of electromagnetic field is calculated by solving Maxwell’s equations, and the exact analytic solutions are obtained in terms of confluent Heun and hypergeometry functions. This allows us to achieve the full-wave scattering cross section (SCS) analytically. The corresponding numerical analysis indicates that the full-wave SCS can be extremely small over a broad frequency band, representing a broadband electromagnetic transparency. Moreover, the analytic expression of the full-wave SCS also reveals the conditions for achieving the broadband electromagnetic transparency and makes tunable electromagnetic transparency feasible.

© 2011 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(160.3918) Materials : Metamaterials
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Metamaterials

History
Original Manuscript: November 10, 2010
Revised Manuscript: January 19, 2011
Manuscript Accepted: February 12, 2011
Published: April 5, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
L. Sun and K. W. Yu, "Broadband electromagnetic transparency by graded metamaterials: scattering cancellation scheme," J. Opt. Soc. Am. B 28, 994-1001 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65, 376–379(1975). [CrossRef]
  2. H. Chew and M. Kerker, “Abnormally low electromagnetic scattering cross sections,” J. Opt. Soc. Am. 66, 445–449 (1976). [CrossRef]
  3. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  4. A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578–7590 (2007). [CrossRef] [PubMed]
  5. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008). [CrossRef] [PubMed]
  6. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007). [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A: Pure Appl. Opt. 10, 093002 (2008). [CrossRef]
  8. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef] [PubMed]
  9. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  10. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009). [CrossRef]
  11. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  13. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]
  14. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photon. 1, 224–227 (2007). [CrossRef]
  15. H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  16. J. J. Zhang, J. T. Huangfu, Y. Luo, H. S. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008). [CrossRef]
  17. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009). [CrossRef]
  18. T. Tyc, H. Y. Chen, C. T. Chan, and U. Leonhardt, “Non-Euclidean cloaking for light waves,” IEEE J. Sel. Top. Quantum Electron. 16, 418–426 (2010). [CrossRef]
  19. H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1990).
  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge, 1999). [PubMed]
  23. L. Tsang, J. A. Kong, and K. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000). [CrossRef]
  24. C. G. Gray, “Multipole expansions of electromagnetic fields using Debye potentials,” Am. J. Phys. 46, 169–179 (1978). [CrossRef]
  25. C. G. Gray, “Debye potential representation of vector fields,” Am. J. Phys. 46, 735–736 (1978). [CrossRef]
  26. E. W. Leaver, “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics,” J. Math. Phys. 27, 1238–1265 (1986). [CrossRef]
  27. A. Ronveaux, Heun’s Differential Equations (Oxford, 1995).
  28. Z. X. Wang and D. R. Guo, Introduction to Special Functions (Peking University, 2004).
  29. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover, 1965).
  30. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956(2004). [CrossRef] [PubMed]
  31. L. Dong, G. Q. Gu, and K. W. Yu, “First-principles approach to dielectric response of graded spherical particles,” Phys. Rev. B 67, 224205 (2003). [CrossRef]
  32. L. Gao, T. H. Fung, K. W. Yu, and C. W. Qiu, “Electromagnetic transparency by coated spheres with radial anisotropy,” Phys. Rev. E 78, 046609 (2008). [CrossRef]
  33. J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006). [CrossRef]
  34. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, “Optical negative refraction in ferrofluids with magnetocontrollability,” Phys. Rev. Lett. 104, 034501 (2010). [CrossRef] [PubMed]
  35. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006). [CrossRef] [PubMed]
  36. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009). [CrossRef] [PubMed]
  37. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Broadband exterior cloaking,” Opt. Express 17, 14800–14805 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited