OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1353–1364

Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium

Zining Yang, Hongyan Wang, Qisheng Lu, Yuandong Li, Weihong Hua, Xiaojun Xu, and Jinbao Chen  »View Author Affiliations


JOSA B, Vol. 28, Issue 6, pp. 1353-1364 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001353


View Full Text Article

Enhanced HTML    Acrobat PDF (1951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diode alkali vapor lasers (DPALs) with a flowing medium provide a pathway to extremely high-power CW or quasi-CW laser operations. In this article, the model for end-pumped alkali lasers [Beach et al., J. Opt. Soc. Am. B 21, 2151(2004)] is expanded to model DPALs in a side-pumped configuration. The difference between our model and the published model [Komashko et al., Proc. SPIE 7581, 75810H-1 (2010)] is studied, and a comparison with other people’s experimental results [Zweiback et al., Proc. SPIE 7915, 791509-1 (2011)] is made, which demonstrates the validity of our model. Some important influencing factors are simulated and analyzed. A conceptual power-scaled design of a megawatt-class side-pumped flowing DPAL is made. The results demonstrate an optical-to-optical efficiency over 60% with all the other parameters reasonable and available in the near future.

© 2011 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 6, 2011
Revised Manuscript: April 1, 2011
Manuscript Accepted: April 4, 2011
Published: May 5, 2011

Citation
Zining Yang, Hongyan Wang, Qisheng Lu, Yuandong Li, Weihong Hua, Xiaojun Xu, and Jinbao Chen, "Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium," J. Opt. Soc. Am. B 28, 1353-1364 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-6-1353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  2. P. Rabinowitz, S. Jacobs, and G. Gould, “Continuous optically pumped Cs laser,” Appl. Opt. 1, 513–516 (1962). [CrossRef]
  3. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003). [CrossRef] [PubMed]
  4. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010). [CrossRef]
  5. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169 (2007). [CrossRef] [PubMed]
  6. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave rubidium vapor laser,” Opt. Express 16, 748–751 (2008). [CrossRef] [PubMed]
  7. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33, 414–415 (2008). [CrossRef] [PubMed]
  8. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008). [CrossRef]
  9. J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009). [CrossRef]
  10. J. Zweiback and W. F. Krupke, “28 W average power hydrocarbon-free rubidium-diode-pumped alkali laser,” Opt. Express 18, 1444–1449 (2010). [CrossRef] [PubMed]
  11. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).
  12. Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009). [CrossRef]
  13. W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004). [CrossRef]
  14. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004). [CrossRef]
  15. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010). [CrossRef]
  16. A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side-pumped alkali laser,” Proc. SPIE 7581, 75810H-1–75810H-9 (2010).
  17. J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor laser,” Proc. SPIE 7915, 791509-1–791509-7 (2011).
  18. A. E. Siegman, “Electric dipole transitions in real atoms,” in Lasers (University Science Books, 1986), pp. 150–153
  19. D. A. Steck, “Rubidium 87 D line data,” available online at http://steck.us/alkalidata.
  20. E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970). [CrossRef]
  21. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (5S21/2→5P21/2, 5P23/2) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997). [CrossRef]
  22. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009). [CrossRef]
  23. D. A. Steck, “Rubidium 85 D line data,” available online at http://steck.us/alkalidata.
  24. J. Zweiback and B. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525-1–700525-8 (2008). [CrossRef]
  25. Available online at http://www.lasertel.com/Products/CWArray.aspx.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited