OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1365–1373

Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity

Ting Shan Luk, Shisheng Xiong, Weng W. Chow, Xiaoyu Miao, Ganapathi Subramania, Paul J. Resnick, Arthur J. Fischer, and Jeffrey C. Brinker  »View Author Affiliations

JOSA B, Vol. 28, Issue 6, pp. 1365-1373 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report up to 75 times enhancement in emission from lithographically produced photonic crystals with postprocessing close-packed colloidal quantum-dot incorporation. In our analysis, we use the emission from a close-packed free-standing film as a reference. After discounting the angular redistribution effect, our analysis shows that the observed enhancement is larger than the combined effects of Purcell enhancement and dielectric enhancement with the microscopic local field. The additional enhancement mechanisms, which are consistent with all our observations, are thought to be spectral diffusion mediated by phonons and local polarization fluctuations that allow off-resonant excitons to emit at the cavity wavelengths.

© 2011 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(300.2140) Spectroscopy : Emission
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 15, 2011
Manuscript Accepted: March 23, 2011
Published: May 9, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Ting Shan Luk, Shisheng Xiong, Weng W. Chow, Xiaoyu Miao, Ganapathi Subramania, Paul J. Resnick, Arthur J. Fischer, and Jeffrey C. Brinker, "Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity," J. Opt. Soc. Am. B 28, 1365-1373 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003). [CrossRef] [PubMed]
  2. J. Wiersig, C. Gies, F. Jahnke, M. Aszmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009). [CrossRef] [PubMed]
  3. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  4. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef] [PubMed]
  5. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005). [CrossRef]
  6. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006). [CrossRef]
  7. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photon. 1, 215–223 (2007). [CrossRef]
  8. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000). [CrossRef] [PubMed]
  9. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999). [CrossRef]
  10. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009). [CrossRef]
  11. J. M. Phillips, P. E. Burrows, R. F. Daves, J. A. Simmons, G. G. Malliaras, F. So, J. A. Misewich, A. V. Nurmikko, and D. L. Smith, “Basic research needs for solid-state lighting,” Basic Energy Sciences report (U.S. Department of Energy, 2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.
  12. M. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, “Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation,” Nano Lett. 9, 1217–1222 (2009). [CrossRef] [PubMed]
  13. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices ED-31, 711–716 (1984). [CrossRef]
  14. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304(R) (2005). [CrossRef]
  15. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008). [CrossRef] [PubMed]
  16. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006). [CrossRef]
  17. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17, 15975–15982 (2009). [CrossRef] [PubMed]
  18. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef] [PubMed]
  19. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Phys. 4, 859–863 (2008). [CrossRef]
  20. I. Fushman, D. Englund, and J. Vuckovic, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005). [CrossRef]
  21. M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008). [CrossRef]
  22. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007). [CrossRef]
  23. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008). [CrossRef]
  24. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009). [CrossRef] [PubMed]
  25. J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110(2008). [CrossRef]
  26. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavitieson an Er-doped silicon nitride platform,” Opt. Express 18, 2601–2612 (2010). [CrossRef] [PubMed]
  27. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010). [CrossRef] [PubMed]
  28. H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28, 2390–2392 (2003). [CrossRef] [PubMed]
  29. Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000). [CrossRef]
  30. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008). [CrossRef]
  31. S. Xiong, X. Miao, J. Spencer, C. Khripin, T. S. Luk, and C. J. Brinker, “Integration of a close-packed quantum dot monolayer with a photonic-crystal cavity via interfacial self-assembly and transfer,” Small 6, 2126–2129 (2010). [CrossRef] [PubMed]
  32. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425 (2003). [CrossRef] [PubMed]
  33. J. Pang, S. Xiong, F. Jaeckel, Z. Sun, D. Dunphy, and C. J. Brinker, “Free-standing, patternable nanoparticle/polymer monolayer arrays formed by evaporation induced self-assembly at a fluid interface,” J. Am. Chem. Soc. 130, 3284–3285 (2008). [CrossRef] [PubMed]
  34. H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, and C. J. Brinker, “Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays,” Science 304, 567–571 (2004). [CrossRef] [PubMed]
  35. R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005). [CrossRef] [PubMed]
  36. J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008). [CrossRef] [PubMed]
  37. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Princeton Univ. Press, 2008).
  38. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769(1997). [CrossRef]
  39. N.-V.-Q. Tran, S. Combrie, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009). [CrossRef]
  40. J.-Y. Zhang, X.-Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett. 27, 1253–1255 (2002). [CrossRef]
  41. M. E. Crenshaw, “The quantized field in a dielectric and application to the radiative decay of an embedded atom,” Phys. Lett. A 358, 438–442 (2006). [CrossRef]
  42. K. Dolgaleva, R. W. Boyd, and P. W. Milonni, “Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles,” J. Opt. Soc. Am. B 24, 516–521(2007). [CrossRef]
  43. P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004). [CrossRef] [PubMed]
  44. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991). [CrossRef] [PubMed]
  45. H. A. Lorentz, Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Stechert, 1916).
  46. M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000). [CrossRef] [PubMed]
  47. E. He, H. Zheng, X. Zhang, and S. Qu, “Local-field effect on the fluorescence relaxation of Tm3+:LaF3 nanocrystals immersed in liquid medium,” Luminescence 25, 66–70 (2010). [CrossRef]
  48. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007). [CrossRef]
  49. J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999). [CrossRef]
  50. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997). [CrossRef]
  51. J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007). [CrossRef]
  52. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6, 510–514 (2006). [CrossRef] [PubMed]
  53. L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007). [CrossRef]
  54. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000). [CrossRef] [PubMed]
  55. S. Liao, M. Dutta, D. Schonfeld, T. Yamanaka, and M. Stroscio, “Quantum dot blinking: relevance to physical limits for nanoscale optoelectronic device,” J. Comput. Electron. 7, 462–465(2008). [CrossRef]
  56. M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994). [CrossRef]
  57. A. D. Stein and M. D. Fayer, “Spectral diffusion in liquids,” J. Chem. Phys. 97, 2948–2962 (1992). [CrossRef]
  58. G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J. P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photon. 4, 696–699 (2010). [CrossRef]
  59. S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111, 7302–7305 (2007). [CrossRef]
  60. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000). [CrossRef] [PubMed]
  61. C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Forster energy transfer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87 (2001). [CrossRef]
  62. G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667–670 (1998). [CrossRef]
  63. T. Kobayashi, Q. Zheng, and T. Sekiguchi, “Resonant dipole-dipole interaction in a cavity,” Phys. Rev. A 52, 2835–2846(1995). [CrossRef] [PubMed]
  64. A. Majundar, Y. Y. Gong, E. D. Kim, and J. Vuckovic, “Phonon mediated off-resonant quantum dot-cavity coupling,” arXiv:1012.3125v1 (2010).
  65. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photon. 3, 724–728 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited