OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1404–1408

Extrapolation of the intensity autocorrelation function of a quantum-dot micropillar laser into the thermal emission regime

Jean-Sebastian Tempel, Ilya A. Akimov, Marc Aßmann, Christian Schneider, Sven Höfling, Caroline Kistner, Stephan Reitzenstein, Lukas Worschech, Alfred Forchel, and Manfred Bayer  »View Author Affiliations

JOSA B, Vol. 28, Issue 6, pp. 1404-1408 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present investigations on the coherence of the emission from the fundamental mode of an AlGaInAs/GaAs quantum-dot microcavity laser. We measure the first-order field-correlation function g ( 1 ) ( τ ) with a Michelson interferometer, from which we determine coherence times of up to 20 ns for the highest pump powers. To fully characterize the coherence properties of the cavity emission, we apply a phenomenological model that connects the first- and second-order correlation functions. Hereby it is possible to overcome the limited sensitivity of the streak camera used for photon-correlation measurements, and thus to extend the accessible excitation-power range for g ( 2 ) ( τ ) down to the thermal regime.

© 2011 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(140.3948) Lasers and laser optics : Microcavity devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 14, 2011
Revised Manuscript: April 13, 2011
Manuscript Accepted: April 14, 2011
Published: May 18, 2011

Jean-Sebastian Tempel, Ilya A. Akimov, Marc Aßmann, Christian Schneider, Sven Höfling, Caroline Kistner, Stephan Reitzenstein, Lukas Worschech, Alfred Forchel, and Manfred Bayer, "Extrapolation of the intensity autocorrelation function of a quantum-dot micropillar laser into the thermal emission regime," J. Opt. Soc. Am. B 28, 1404-1408 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010). [CrossRef]
  2. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4848 (2008). [CrossRef] [PubMed]
  3. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009). [CrossRef] [PubMed]
  4. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89, 051107 (2006). [CrossRef]
  5. A. Dousse, J. Suffczyński, R. Braive, A. Miard, A. Lemaître, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, “Scalable implementation of strongly coupled cavity-quantum dot devices,” Appl. Phys. Lett. 94, 121102 (2009). [CrossRef]
  6. S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-β elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90, 161111 (2007). [CrossRef]
  7. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]
  8. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007). [CrossRef] [PubMed]
  9. S. Ates, C. Gies, S. M. Ulrich, J. Wiersig, S. Reitzenstein, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser,” Phys. Rev. B 78, 155319 (2008). [CrossRef]
  10. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996). [CrossRef]
  11. B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72, 1421–1423(1998). [CrossRef]
  12. R. Loudon, The Quantum Theory of Light (Clarendon, 1973).
  13. J. Wiersig, “Microscopic theory of first-order coherence in microcavity lasers based on semiconductor quantum dots,” Phys. Rev. B 82, 155320 (2010). [CrossRef]
  14. M. Aßmann, F. Veit, M. Bayer, C. Gies, F. Jahnke, S. Reitzenstein, S. Höfling, L. Worschech, and A. Forchel, “Ultrafast tracking of second-order photon correlations in the emission of quantum-dot microresonator lasers,” Phys. Rev. B 81, 165314 (2010). [CrossRef]
  15. M. Aßmann, F. Veit, J.-S. Tempel, T. Berstermann, H. Stolz, M. van der Poel, J. M. Hvam, and M. Bayer, “Measuring the dynamics of second-order correlation functions inside a pulse with picosecond time resolution,” Opt. Express 18, 20229–20241(2010). [CrossRef] [PubMed]
  16. H. J. Carmichael, P. Drummond, P. Meystre, and D. F. Walls, “Intensity correlations in resonance fluorescence with atomic number fluctuations,” J. Phys. A: Math. Gen. 11, L121–L126(1978). [CrossRef]
  17. R. Loudon, “Non-classical effects in the statistical properties of light,” Rep. Prog. Phys. 43, 913–913 (1980). [CrossRef]
  18. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000). [CrossRef] [PubMed]
  19. With the photon lifetime τ0, the effective coherence time of the system is τc,eff−1=(2τ0)−1+τc−1.
  20. We note that our model cannot describe the oscillatory behavior observed in the experimental data. Possible origins of these oscillations have been discussed in .
  21. C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, “Semiconductor model for quantum-dot-based microcavity lasers,” Phys. Rev. A 75, 013803 (2007). [CrossRef]
  22. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009). [CrossRef]
  23. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited