OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1409–1415

Magnetoactive media for cryogenic Faraday isolators

Aleksey V. Starobor, Dmitry S. Zheleznov, Oleg V. Palashov, and Efim A. Khazanov  »View Author Affiliations


JOSA B, Vol. 28, Issue 6, pp. 1409-1415 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001409


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyzed a number of optical media, such as GGG, Nd:YAG, Yb:YAG, fused silica, CaF 2 , Yb : CaF 2 , and CdMnTe, that have not been used, to our knowledge, in the cryogenic Faraday isolator (FI) before. The temperature dependence of the Verdet constant and thermo-optical constants was experimentally investigated for λ = 1.07 μm . We calculated the magneto-optical figure-of-merit and assessed the feasibility of using FI media with multikilowatt average laser power.

© 2011 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems

ToC Category:
Optical Devices

History
Original Manuscript: February 11, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 7, 2011
Published: May 18, 2011

Citation
Aleksey V. Starobor, Dmitry S. Zheleznov, Oleg V. Palashov, and Efim A. Khazanov, "Magnetoactive media for cryogenic Faraday isolators," J. Opt. Soc. Am. B 28, 1409-1415 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-6-1409


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001). [CrossRef]
  2. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002). [CrossRef]
  3. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef] [PubMed]
  4. A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997). [CrossRef]
  5. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999). [CrossRef]
  6. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010). [CrossRef]
  7. T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).
  8. C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967). [CrossRef]
  9. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006). [CrossRef]
  10. D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007). [CrossRef]
  11. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971). [CrossRef]
  12. J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636(1984). [CrossRef] [PubMed]
  13. E.Khazanov, ed., Faraday Isolators for High Average Power Lasers, Advances in Solid State Lasers Development and Applications (INTECH, 2010).
  14. T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” J. Opt. Technol. 59, 48–52 (1992).
  15. V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984). [CrossRef]
  16. I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009). [CrossRef]
  17. U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).
  18. A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).
  19. G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963). [CrossRef]
  20. J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969). [CrossRef]
  21. R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996). [CrossRef]
  22. L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721. [CrossRef]
  23. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  24. www.mt-berlin.com/frames_cryst/crystals_frameset1.htm, “MolTech GmbH.”
  25. J. Vetrovec, “Ultrahigh-average power solid-state laser,” Proc. SPIE 4760, 491–505 (2002). [CrossRef]
  26. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007). [CrossRef] [PubMed]
  27. O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008). [CrossRef]
  28. M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005). [CrossRef]
  29. S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999). [CrossRef]
  30. G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004). [CrossRef]
  31. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002). [CrossRef]
  32. W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007). [CrossRef]
  33. F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008). [CrossRef]
  34. F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009). [CrossRef]
  35. N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000). [CrossRef]
  36. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991). [CrossRef] [PubMed]
  37. E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993). [CrossRef]
  38. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).
  39. P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990). [CrossRef]
  40. R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995). [CrossRef]
  41. H. J. Jimenez-Gonzalez and R. L. Aggarwal, “Near-infrared Faraday rotation in Cd1−xMnxTe,” Phys. Rev. B 45, 14011–14018(1992). [CrossRef]
  42. Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006). [CrossRef]
  43. Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007). [CrossRef]
  44. L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000). [CrossRef]
  45. M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990). [CrossRef]
  46. T. C. Rich and D. A. Pinnow, “Optical absorption in fused silica and fused quartz at 1.06 μ,” Appl. Opt. 12, 2234–2234 (1973). [CrossRef] [PubMed]
  47. Corning, Incorporated, “Calcium fluoride product information sheet,” www.corning.com/specialtymaterials.
  48. International Crystal Laboratories, “Potassium chloride (KCl) optical crystals,” www.internationalcrystal.net/optics_20.htm.
  49. G. L. Bourdet and H. Yu, “Longitudinal temperature distribution in an end-pumped solid-state amplifier medium: application to a high average power diode pumped Yb:YAG thin disk amplifier,” Appl. Opt. 46, 6033–6041 (2007). [CrossRef] [PubMed]
  50. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).
  51. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited