OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1467–1474

Fourier optics theory for invisibility cloaks

Kedi Wu, Qiluan Cheng, and Guo Ping Wang  »View Author Affiliations


JOSA B, Vol. 28, Issue 6, pp. 1467-1474 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001467


View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Currently, the most popular method for technically obtaining the geometric and electromagnetic parameters of invisibility cloaks is mainly based upon transformation optics. In this paper, by introducing transfer functions to elucidate the roles of the invisibility cloaks played on angular spectrum of the objects, we present an optical imaging theory to unify both Pendry cloaks and complementary media-based invisibility cloaks. The theory can not only give an analytical insight into the physical mechanism behind the invisibility cloaks and perfect lenses in hiding objects, creating illusions, and performing perfect imaging, but also provide a way for getting the electromagnetic parameters of the systems. The results are strictly of consistence with that obtained from transformation optics, confirming the validity of our Fourier optics theory.

© 2011 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(070.7345) Fourier optics and signal processing : Wave propagation
(260.2710) Physical optics : Inhomogeneous optical media
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

History
Original Manuscript: March 14, 2011
Revised Manuscript: April 22, 2011
Manuscript Accepted: April 22, 2011
Published: May 19, 2011

Citation
Kedi Wu, Qiluan Cheng, and Guo Ping Wang, "Fourier optics theory for invisibility cloaks," J. Opt. Soc. Am. B 28, 1467-1474 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-6-1467


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996). [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  4. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008). [CrossRef] [PubMed]
  5. Z. Jacob, L. A. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  6. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photon. 1, 224–227(2007). [CrossRef]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009). [CrossRef] [PubMed]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009). [CrossRef]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  14. J. B. Pendry and D. R. Smith, “Reversing light with negative refraction,” Phys. Today 57, 37–43 (2004). [CrossRef]
  15. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  16. Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef] [PubMed]
  17. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  19. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008). [CrossRef]
  20. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three dimensional optical metamaterial exhibiting negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  21. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001). [CrossRef] [PubMed]
  22. B. Zhang, T. Chan, and B.-I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010). [CrossRef] [PubMed]
  23. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  24. A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10, 115022(2008). [CrossRef]
  25. K. Wu and G. P. Wang, “General insight into the complementary medium-based camouflage devices from Fourier optics,” Opt. Lett. 35, 2242–2244 (2010). [CrossRef] [PubMed]
  26. K. Wu and G. P. Wang, “Hiding objects and creating illusions above a carpet filter using a Fourier optics approach,” Opt. Express 18, 19894–19901 (2010). [CrossRef] [PubMed]
  27. J. Zhang, Y. Luo, H. Chen, J. Huangfu, B.-I. Wu, L. Ran, and J. A. Kong, “Guiding waves through an invisible tunnel,” Opt. Express 17, 6203–6208 (2009). [CrossRef] [PubMed]
  28. Y. Luo, J. Zhang, H. Chen, J. Huangfu, and L. Ran, “High-directivity antenna with small antenna aperture,” Appl. Phys. Lett. 95, 193506 (2009). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  30. M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).
  31. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2004).
  32. J. B. Pendry, “Taking the wraps off cloaking,” Physics 2, 95–100 (2009). [CrossRef]
  33. Y. Luo, J.-J. Zhang, H.-S. Chen, B.-I. Wu, and L.-X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178(2009). [CrossRef]
  34. H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104, 253903 (2010). [CrossRef] [PubMed]
  35. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited