OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1514–1517

Optothermal tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities

Mehmet A. Dündar, Bowen Wang, Richard Nötzel, Fouad Karouta, and Rob W. van der Heijden  »View Author Affiliations

JOSA B, Vol. 28, Issue 6, pp. 1514-1517 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A large and reversible all-optical tuning effect is demonstrated for liquid crystal (LC) infiltrated InGaAsP photonic crystal membrane nanocavities. The tuning is based on the change in the refractive index of the LC due to the large local heating caused by absorption of laser light by the semiconductor. Compared to opto-thermal tuning based on semiconductor heating alone, the effects with the LC are an order of magnitude larger and can be either redshifting or blueshifting, depending on the spatial distribution of the cavity mode’s polarization direction.

© 2011 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: March 4, 2011
Revised Manuscript: April 5, 2011
Manuscript Accepted: April 21, 2011
Published: May 24, 2011

Mehmet A. Dündar, Bowen Wang, Richard Nötzel, Fouad Karouta, and Rob W. van der Heijden, "Optothermal tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," J. Opt. Soc. Am. B 28, 1514-1517 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004). [CrossRef]
  2. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003). [CrossRef]
  3. A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003). [CrossRef]
  4. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004). [CrossRef]
  5. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363(2007). [CrossRef] [PubMed]
  6. E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588–592 (2004). [CrossRef] [PubMed]
  7. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002). [CrossRef]
  8. M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006). [CrossRef] [PubMed]
  9. A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007). [CrossRef]
  10. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008). [CrossRef]
  11. S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008). [CrossRef]
  12. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008). [CrossRef] [PubMed]
  13. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009). [CrossRef]
  14. G. Barillaro, S. Merlo, and L. M. Strambini, “Optical characterization of alcohol-infiltrated one-dimensional silicon photonic crystals,” Opt. Lett. 34, 1912–1914 (2009). [CrossRef] [PubMed]
  15. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000). [CrossRef]
  16. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003). [CrossRef]
  17. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdre, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation,” Opt. Lett. 31, 1238–1240 (2006). [CrossRef] [PubMed]
  18. P. El-Kallassi, R. Ferrini, L. Zuppiroli, N. Le Thomas, R. Houdre, A. Berrier, S. Anand, and A. Talneau, “Optical tuning of planar photonic crystals infiltrated with organic molecules,” J. Opt. Soc. Am. B 24, 2165–2171 (2007). [CrossRef]
  19. M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009). [CrossRef]
  20. B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010). [CrossRef] [PubMed]
  21. R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006). [CrossRef]
  22. M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009). [CrossRef]
  23. M. A. Du¨ndar, E. C. I. Ryckebosch, R. No¨tzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010). [CrossRef]
  24. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004). [CrossRef]
  25. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16, 6515–6527 (2008). [CrossRef] [PubMed]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited