OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1529–1533

Guiding properties of large mode area silicon microstructured fibers: a route to effective single mode operation

N. Vukovic, N. Healy, and A. C. Peacock  »View Author Affiliations


JOSA B, Vol. 28, Issue 6, pp. 1529-1533 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001529


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical simulations are used to investigate the guiding properties of large mode area silicon microstructured fibers. Modal analysis of the isolated high refractive index core and cladding rod inclusions will be applied to show that the guidance mechanism of the composite fiber can be well described via a hybrid of the total internal reflection and antiresonant reflecting optical waveguide models. It will be shown that by selectively filling the cladding holes with silicon, which has been modified to have a slightly raised index, the fiber can be designed to operate in an effectively single-mode regime over an extended wavelength range.

© 2011 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(160.6000) Materials : Semiconductor materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 4, 2011
Revised Manuscript: April 25, 2011
Manuscript Accepted: April 27, 2011
Published: May 24, 2011

Virtual Issues
June 3, 2011 Spotlight on Optics

Citation
N. Vukovic, N. Healy, and A. C. Peacock, "Guiding properties of large mode area silicon microstructured fibers: a route to effective single mode operation," J. Opt. Soc. Am. B 28, 1529-1533 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-6-1529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  2. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008). [CrossRef] [PubMed]
  3. M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotech. 15, S622–S627(2004). [CrossRef]
  4. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010). [CrossRef]
  5. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008). [CrossRef]
  6. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009). [CrossRef] [PubMed]
  7. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003). [CrossRef] [PubMed]
  8. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, “Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,” Opt. Express 14, 2994–2999 (2006). [CrossRef] [PubMed]
  9. N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).
  10. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16, 4337–4346 (2008). [CrossRef] [PubMed]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  12. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852(2003). [CrossRef] [PubMed]
  13. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980). [CrossRef]
  14. J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express 16, 18631–18645 (2008). [CrossRef]
  15. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  16. G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998). [CrossRef]
  17. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004). [CrossRef]
  18. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19, 1713–1727 (2011). [CrossRef] [PubMed]
  19. C.-P. Yu and J.-H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17, 8729–8734 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited