OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1534–1543

Circuit-level transient simulation of configurable ring resonators using physical models

Tom Smy, Pavan Gunupudi, Steve McGarry, and Winnie N. Ye  »View Author Affiliations

JOSA B, Vol. 28, Issue 6, pp. 1534-1543 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a methodology for the incorporation of actively configurable interference-based optical elements into a circuit-level optoelectronic simulator. The self-consistent optoelectronic simulator is based on modified nodal analysis. The paper uses ring-resonator-based devices as examples of configurable devices. Construction of compact models of these devices from optical scattering and the waveguide elements using fundamental principles is presented in detail. In the results section, accuracy of the compact model of the ring resonator is first confirmed for static devices for steady-state and transient conditions. Last, the devices are placed in a complex optical circuit and used to modulate an optical carrier and select a particular channel from a multichannel optical signal. The modelling framework proposed proved to be robust and efficient for transient simulation of configurable elements in a self-consistent optoelectronic simulation engine.

© 2011 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.4110) Optical devices : Modulators
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: March 8, 2011
Manuscript Accepted: April 29, 2011
Published: May 24, 2011

Tom Smy, Pavan Gunupudi, Steve McGarry, and Winnie N. Ye, "Circuit-level transient simulation of configurable ring resonators using physical models," J. Opt. Soc. Am. B 28, 1534-1543 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  2. L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97, 1161–l1165 (2009). [CrossRef]
  3. A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]
  4. T. Quarles, A. Newton, D. Pederson, and A. Sangiovanni-Vincentelli, “SPICE 3 Version 3F5 User’s Manual,” Department of Electrical Engineering and Computer Sciences, University of California, Berkeley.
  5. C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to network analysis,” IEEE Trans. Circuits Syst. 22, 504–509 (1975). [CrossRef]
  6. U. Wali, R. Pal, and B. Chatterjee, “On the modified nodal approach to network analysis,” Proc. IEEE 73, 485–487(1985). [CrossRef]
  7. P. Gunupudi, T. Smy, J. Klein, and Z. J. Jakubczyk, “Self-consistent simulation of opto-electronic circuits using a modified nodal analysis formulation,” IEEE Trans. Adv. Packaging 33, 979–993 (2010). [CrossRef]
  8. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  9. J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design (Van Nostrand Reinhold, 1993).
  10. J. D. Jackson, Classical Electrodynamics (Academic, 1998).
  11. T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, 1995).
  12. T. Smy and P. Gunupudi, “Robust simulation of opto-electronic systems by alternating complex envelope representations,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., doc. ID TCAD 6410 (to be published). [CrossRef]
  13. P. Gunupudi, T. Smy, J. Klein, and J. Jakubczyk, “Multi-disciplinary simulation of electro-opto-thermal networks using a SPICE-like framework,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper ITuE3.
  14. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).
  15. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14, 9431–9435 (2006). [CrossRef] [PubMed]
  16. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97, 1199–1215(2009). [CrossRef]
  17. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010). [CrossRef]
  18. M. Hammer, “HCMT models of optical microring-resonator circuits,” J. Opt. Soc. Am. B 27, 2237–2246 (2010). [CrossRef]
  19. D. Gallagher, “Modelling photonic integrated circuits using TDTW,” in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper SuQ4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited