OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1544–1552

Electromagnetic energy density in dispersive and dissipative media

Frederico Dias Nunes, Thiago Campos Vasconcelos, Marcel Bezerra, and John Weiner  »View Author Affiliations


JOSA B, Vol. 28, Issue 6, pp. 1544-1552 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001544


View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The description of the energy density associated with an electromagnetic field propagating through matter must treat two different phenomena: dispersion, the variation of the refractive index with frequency, and dissipation, the loss of field energy by absorption. In many cases, as in common dielectrics, the dispersive medium is essentially transparent, so dissipation can be neglected. For metals, however, both dispersion and dissipation must be taken into account, and their respective contributions vary significantly with the frequency of the electromagnetic field. Plasmonic structures such as slits, holes, and channel waveguides always involve surfaces between dielectrics and metals, and the energy density in the vicinity of the interface figures importantly in the dynamic response of these structures to light excitation in the visible and near-infrared spectral regions. Here we consider the electromagnetic energy density propagated on and dissipated at real metal–dielectric surfaces, including the important surface plasmon polariton, the wave guided by the interface. We show how the “stored energy” oscillates over an optical cycle between the plasmonic structure and the propagating surface mode, while the dissipated energy continues to accumulate over the same period. We calculate these energy densities for the case of the silver–air interface (using two datasets for silver permittivity commonly cited in the research literature) over a range of frequencies corresponding to the range of wavelengths from 200 to 2000 nm .

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

History
Original Manuscript: November 10, 2010
Revised Manuscript: March 22, 2011
Manuscript Accepted: March 22, 2011
Published: May 25, 2011

Citation
Frederico Dias Nunes, Thiago Campos Vasconcelos, Marcel Bezerra, and John Weiner, "Electromagnetic energy density in dispersive and dissipative media," J. Opt. Soc. Am. B 28, 1544-1552 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-6-1544

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited