OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1556–1565

Enhanced tunable Raman amplification/attenuation and parametric Raman wavelength conversion in submicrometer silicon waveguides via temperature variation

Thomas Y. L. Ang and Nam Quoc Ngo  »View Author Affiliations

JOSA B, Vol. 28, Issue 6, pp. 1556-1565 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analytically characterize the temperature dependence of Raman amplification, Raman attenuation, and parametric Raman wavelength conversion (PRWC) in submicrometer silicon waveguides (WGs) over the temperature range of 100 to 500 K , near the O-band and C-band wavelengths of 1.33 and 1.55 μm . The efficiencies of Raman amplification/attenuation and PRWC are studied in the context of how the interplay among the Raman gain, two-photon absorption, free-carrier absorption, sidewall roughness, pump-signal-input intensity ratio, and phase matching condition influences the wave propagation in the submicrometer WG at different temperatures. Our results show that the effects of temperature variation can be harnessed to enhance and tune the Raman amplification/attenuation and PRWC. This offers a more dynamic control of the Raman performances of submicrometer silicon WG devices as compared to conventional silicon Raman WG devices operating at a fixed (room) temperature.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5650) Nonlinear optics : Raman effect
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

Original Manuscript: December 16, 2010
Manuscript Accepted: March 10, 2011
Published: May 25, 2011

Thomas Y. L. Ang and Nam Quoc Ngo, "Enhanced tunable Raman amplification/attenuation and parametric Raman wavelength conversion in submicrometer silicon waveguides via temperature variation," J. Opt. Soc. Am. B 28, 1556-1565 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, “The optical age of silicon,” Nature 427, 595–596(2004). [CrossRef] [PubMed]
  2. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 412–421 (2006). [CrossRef]
  3. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Opt. Express 10, 1305–1313 (2002). [PubMed]
  4. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003). [CrossRef] [PubMed]
  5. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003). [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004). [CrossRef] [PubMed]
  7. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12, 5703–5710 (2004). [CrossRef] [PubMed]
  8. N. Vermeulen, C. Debaes, and H. Thienpont, “Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS—Part 1: theoretical analysis,” IEEE J. Sel. Top. Quantum Electron. 13, 770–787 (2007). [CrossRef]
  9. R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, and Y. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004). [CrossRef] [PubMed]
  10. M. Holtmannspoetter, E. Pitschujew, and B. Schmauss, “Broadband, spectrally controlled Raman-active attenuator,” in 35th European Conference on Optical Communication, 2009 (IEEE, 2009), pp. 1–2.
  11. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005). [CrossRef]
  12. N. Vermeulen, C. Debaes, and H. Thienpont, “Coherent anti-Stokes Raman scattering in Raman lasers and Raman wavelength converters,” Laser Photon. Rev. 4, 656–670 (2010). [CrossRef]
  13. T. R. Hart, R. L. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. 148, 845–848 (1966). [CrossRef]
  14. M. Balkanski, R. F. Wallis, and E. Haro, “Anharmornic effects in light scattering due to optical phonon in silicon,” Phys. Rev. B 28, 1928–1934 (1983). [CrossRef]
  15. J. Niu, J. Sha, and D. Yang, “Temperature dependence of first-order Raman scattering in silicon nanowire,” Scr. Mater. 55, 183–186 (2006). [CrossRef]
  16. S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Phys. Status Solidi B 247, 3084–3088 (2010). [CrossRef]
  17. T. K. Liang and H. K. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Quantum Electron. 10, 1149–1153 (2004). [CrossRef]
  18. S. Abdollahi and M. K. Moravvej-Farshi, “Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters,” Appl. Opt. 48, 2505–2514(2009). [CrossRef] [PubMed]
  19. S. T. Lim, Y. L. Ang, C. E. Png, and Eng A. Ong, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15, 11061–11072(2007). [CrossRef] [PubMed]
  20. D. F. Edwards and E. Ochoa, “Infrared refractive index of silicon,” Appl. Opt. 19, 4130–4131 (1980). [CrossRef] [PubMed]
  21. K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical control of parametric processes in silicon waveguides,” Opt. Express 16, 9838–9843 (2008). [CrossRef] [PubMed]
  22. L. Yang, D. Dai, and S. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008). [CrossRef]
  23. K. R. Lewelling and P. J. McCann, “Finite element modeling predicts possibility of thermoelectrically-cooled lead-salt diode lasers,” IEEE Photon. Technol. Lett. 9, 297–299 (1997). [CrossRef]
  24. P. Wang and A. Bar-Cohen, “On-chip hot spot cooling using silicon thermoelectric microcoolers,” J. Appl. Phys. 102, 034503(2007). [CrossRef]
  25. A. Datta, I.-Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. Dasgupta, “Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3, 788–795 (2003). [CrossRef]
  26. M. Wu and W. I. Way, “Fiber nonlinearity limitations in ultra-dense WDM systems,” J. Lightwave Technol. 22, 1483–1498(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited