OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1622–1626

Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide

Lei Dai, Tong Li, and Chun Jiang  »View Author Affiliations

JOSA B, Vol. 28, Issue 7, pp. 1622-1626 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (604 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a two-dimensional photonic crystal line-defect waveguide, in which the two rows of air holes at the two sides of the line defect are infiltrated with dielectric materials. This waveguide exhibits an ultralow high-order-dispersion photonic band. Finite-difference time-domain simulation shows that ultralow high-order dispersion makes an ultrashort Gaussian pulse with width of 0.711 ps or even shorter, to 0.267 ps , propagate without observable pulse broadening and amplitude decrease in a 96 μm long waveguide. The slow light with group velocity of 0.0239 c in a very wide bandwidth of 1.876 THz can theoretically propagate as far as 711 μm with tolerable spread.

© 2011 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: November 11, 2010
Revised Manuscript: May 15, 2011
Manuscript Accepted: May 15, 2011
Published: June 7, 2011

Lei Dai, Tong Li, and Chun Jiang, "Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide," J. Opt. Soc. Am. B 28, 1622-1626 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059(2002). [CrossRef]
  2. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008). [CrossRef]
  3. T. Fujisawa and M. Koshiba, “Finite-element modeling of nonlinear Mach-Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing,” J. Lightwave Technol. 24, 617–623 (2006). [CrossRef]
  4. L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  5. C. Chang-Hasnain and S. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24, 4642–4654 (2006). [CrossRef]
  6. L. Shi, X. Chen, L. Xing, and W. Tan, “Compact and tunable slow and fast light device based on two coupled dissimilar optical nanowires,” J. Lightwave Technol. 26, 3714–3720 (2008). [CrossRef]
  7. D. Sun and P. Ku, “Slow light using P-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008). [CrossRef]
  8. L. Zhang, T. Luo, C. Yu, W. Zhang, and A. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25, 1754–1760 (2007). [CrossRef]
  9. Z. Zhu, A. Dawes, D. Gauthier, L. Zhang, and A. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007). [CrossRef]
  10. G. Gehring, R. Boyd, A. Gaeta, D. Gauthier, and A. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008). [CrossRef]
  11. B. Zhang, L. Yan, L. Zhang, and A. Willner, “Multichannel SBS Slow Light Using Spectrally Sliced Incoherent Pumping,” J. Lightwave Technol. 26, 3763–3769 (2008). [CrossRef]
  12. C. Lin, W. Zhang, Y. Huang, and J. Peng, “Defect Bragg fiber with low loss for broadband and zero dispersion slow light,” J. Lightwave Technol. 25, 3776–3783 (2007). [CrossRef]
  13. L. Schenato, M. Santagiustina, and C. Someda, “Fundamental and random birefringence limitations to delay in slow light fiber parametric amplification,” J. Lightwave Technol. 26, 3721–3726(2008). [CrossRef]
  14. Y. Chen, W. Xue, F. Öhman, and J. Mørk, “Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides,” J. Lightwave Technol. 26, 3734–3743(2008). [CrossRef]
  15. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  16. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  17. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  18. P. L. Kelley, I. P. Kaminow, and G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  19. M. Eich and A. Yu. Petrov, “Efficient approximation to calculate time delay and dispersion in linearly chirped periodical microphotonic structures,” IEEE J. Quantum Electron. 41, 1502–1509(2005). [CrossRef]
  20. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005). [CrossRef] [PubMed]
  21. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguide,” Appl. Phys. Lett. 85, 1101–1103 (2004). [CrossRef]
  22. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010). [CrossRef]
  23. H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010). [CrossRef]
  24. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  25. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  26. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450(2006). [CrossRef] [PubMed]
  27. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef] [PubMed]
  28. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008). [CrossRef] [PubMed]
  29. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007). [CrossRef] [PubMed]
  30. A. Saynatjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef] [PubMed]
  31. L. Dai and C. Jiang, “Ultrawideband low dispersion slow light waveguides,” J. Lightwave Technol. 27, 2862–2868 (2009). [CrossRef]
  32. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef] [PubMed]
  33. M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008). [CrossRef]
  34. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010). [CrossRef]
  35. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007). [CrossRef]
  36. R. S. Tucker, P. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  37. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005). [CrossRef]
  38. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005). [CrossRef]
  39. J. B. Khurgin, “Expanding the bandwidth of slow-light photonic devices based on coupled resonators,” Opt. Lett. 30, 513–515(2005). [CrossRef] [PubMed]
  40. B. Macke and B. Segard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23, 125–141 (2003). [CrossRef]
  41. J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006). [CrossRef]
  42. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010). [CrossRef]
  43. A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwaveguide light,” Phys. Rev. Lett. 103, 043906 (2009). [CrossRef] [PubMed]
  44. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000). [CrossRef]
  45. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008). [CrossRef] [PubMed]
  46. K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004). [CrossRef]
  47. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005). [CrossRef]
  48. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited