OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1638–1644

Effect of chloride ion introduction on structural and 1.5 μm emission properties in Er 3 + -doped fluorophosphate glass

Ying Tian, Rongrong Xu, Lili Hu, and Junjie Zhang  »View Author Affiliations


JOSA B, Vol. 28, Issue 7, pp. 1638-1644 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001638


View Full Text Article

Enhanced HTML    Acrobat PDF (554 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Effects of chloride ion introduction on structural and 1.5 μm emission properties in Er 3 + -doped fluorophosphate have been investigated. The structural changes revealed by the measured Raman spectra indicate that the chloride ions have an important influence on the phonon density of host glasses. With increasing chloride content, the phonon density of fluorophosphate glasses decreases. The chloride modified fluorophosphate glasses possessing higher thermal stability are suitable for broadband amplifier fiber fabrication. Desirable thermal resistance properties and spectroscopic characteristics of Er 3 + -doped chloride fluorophosphate glass indicate that it is a promising material for 1.5 μm lasers.

© 2011 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.3130) Materials : Integrated optics materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Materials

History
Original Manuscript: February 28, 2011
Revised Manuscript: April 25, 2011
Manuscript Accepted: May 4, 2011
Published: June 7, 2011

Citation
Ying Tian, Rongrong Xu, Lili Hu, and Junjie Zhang, "Effect of chloride ion introduction on structural and 1.5 μm emission properties in Er3+-doped fluorophosphate glass," J. Opt. Soc. Am. B 28, 1638-1644 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-7-1638


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998). [CrossRef]
  2. J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μmEr3+ doped silica fibre amplifier,” Electron. Lett. 26, 1645–1646 (1990). [CrossRef]
  3. S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000). [CrossRef]
  4. H. Yamauchi and Y. Ohishi, “Spectroscopic properties of Er3+-doped PbO-Ga2O3-GeO2 glass for optical amplifiers,” Opt. Mater. 27, 679–690 (2005). [CrossRef]
  5. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839(2000). [CrossRef]
  6. D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μmerbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994). [CrossRef]
  7. B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+−Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000). [CrossRef]
  8. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72, 399–405 (2001). [CrossRef]
  9. J. Yang, S. Dai, N. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses,” J. Opt. Soc. Am. B 20, 810–815 (2003). [CrossRef]
  10. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000). [CrossRef]
  11. S. Marjanovic, J. Toulouse, H. Jain, C. Sandmann, V. Dierolf, A. R. Kortan, N. Kopylov, and R. G. Ahrens, “Characterization of new erbium-doped tellurite glasses and fibers,” J. Non-Cryst. Solids 322, 311–318 (2003). [CrossRef]
  12. L. Y. Zhang and L. L. Hu, “Evaluation of broadband spectral properties of erbium-doped aluminium fluorophosphate glass,” Chin. Phys. Lett. 20, 1836–1837 (2003). [CrossRef]
  13. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994). [CrossRef]
  14. Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995). [CrossRef]
  15. P. Babu, H. J. Seo, K. H. Jang, R. Balakrishnaiah, C. K. Jayasankar, K.-S. Lim, and V. Lavín, “Optical spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses,” J. Opt. Soc. Am. B 24, 2218–2228 (2007). [CrossRef]
  16. E. Heumann, M. Ledig, D. Ehrt, W. Seeber, E. W. Duczynski, H. J. v. d. Heide, and G. Huber, “Cw laser action of Er3+ in double sensitized fluoroaluminate glass at room temperature,” Appl. Phys. Lett. 52, 255–256 (1988). [CrossRef]
  17. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73–76 (1996). [CrossRef]
  18. M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, and J. Zhang, “Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application,” Mater. Chem. Phys. 114, 295–299 (2009). [CrossRef]
  19. Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32, 1508–1513 (2010). [CrossRef]
  20. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504–083507 (2010). [CrossRef]
  21. R. Balda, J. Fernández, A. de Pablos, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Temperature-dependent concentration quenching and site-dependent effects of Nd3+ fluorescence in fluorophosphate glasses,” Phys. Rev. B 53, 5181–5189 (1996). [CrossRef]
  22. J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Spectroscopic properties of Yb3+ in heavy metal contained fluorophosphate glasses,” Mater. Res. Bull. 40, 2189–2197 (2005). [CrossRef]
  23. H. Ono, K. Nakagawa, M. Yamada, and S. Sudo, “Er3+-doped fluorophosphate glass fibre amplifier for WDM systems,” Electron. Lett. 32, 1586–1587 (1996). [CrossRef]
  24. D. Ehrt, “Structure and properties of fluoride phosphate glasses,” Proc. SPIE 1761, 213–222 (1993). [CrossRef]
  25. E. Kashchieva and Y. Ivanova, “Electron microscopic investigations of microheterogeneous structure in glasses from the GeO2-PbO-PbF2 oxide-halide system,” J. Mater. Sci. Lett. 10, 1356–1358 (1991). [CrossRef]
  26. L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta Part A 56, 1759–1771 (2000). [CrossRef]
  27. A. Elyamani, M. Poulain, S. J. Saggese, and G. H. Sigel Jr., “Properties of chlorofluorozirconate glasses,” J. Non-Cryst. Solids 119, 187–194 (1990). [CrossRef]
  28. J. Parker, A. Clare, A. Seddon, J. Morris, and N. Pitt, “Chloride doped ZBLAN glasses,” Mater. Sci. Forum 19, 475–482 (1987). [CrossRef]
  29. Y. Ding, S. Jiang, B.-C. Hwang, T. Luo, N. Peyghambarian, and Y. Miura, “Spectral properties of erbium-doped lead halotellurite glasses,” Proc. SPIE 3942, 166–173 (2000). [CrossRef]
  30. J. Yang, N. Dai, S. Dai, L. Wen, L. Hu, and Z. Jiang, “Enhancement of upconversion luminescence in Er3+ doped tellurite glasses due to the introduction of PbCl2,” Chem. Phys. Lett. 376, 671–675 (2003). [CrossRef]
  31. V. Fawcett, D. Long, and L. Taylor, “Raman spectroscopic studies of sodium phosphate glasses in the range sodium metaphosphate (NaPO3) to sodium pyrophosphate (Na4P2O7),” in Proceedings of the V International Conference on Raman SpectroscopyE.D.Schmid, ed. (Hans Ferdinand Schulz, 1976), pp. 112–113.
  32. Y. Messaddeq, D. Grando, P. Melnikov, S. J. L. Ribeiro, and L. F. C. Oliveira, “In(PO3)3 stabilised fluoroindate glasses,” J. Alloys Compd. 275–277, 81–85 (1998). [CrossRef]
  33. R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284, 55–60 (2001). [CrossRef]
  34. L. Koudelka, J. Klikorka, M. Frumar, M. Pisárčik, V. Kellö, V. D. Khalilev, V. I. Vakhrameev, and G. D. Chkhenkeli, “Raman spectra and structure of fluorophosphate glasses of ((1−x)Ba(PO3)2−xLiRAlF6,” J. Non-Cryst. Solids 85, 204–210 (1986). [CrossRef]
  35. R. K. Brow and D. R. Tallant, “Structural design of sealing glasses,” J. Non-Cryst. Solids 222, 396–406 (1997). [CrossRef]
  36. J. J. Videau, J. Portier, and B. Piriou, “Raman spectroscopic studies of fluorophosphate glasses,” J. Non-Cryst. Solids 48, 385–392 (1982). [CrossRef]
  37. L. Le Neindre, S. Jiang, B.-C. Hwang, T. Luo, J. Watson, and N. Peyghambarian, “Effect of relative alkali content on absorption linewidth in erbium-doped tellurite glasses,” J. Non-Cryst. Solids 255, 97–102 (1999). [CrossRef]
  38. M. Shojiya, M. Takahashi, R. Kanno, Y. Kawamoto, and K. Kadono, “Optical transitions of Er3+ ions in ZnCl2-based glass,” J. Appl. Phys. 82, 6259–6266 (1997). [CrossRef]
  39. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  40. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  41. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 494424–4442 (1968). [CrossRef]
  42. C. Görller-Walrand, K. Binnemans, Karl A. Gschneidner Jr. , and E. LeRoy, “Spectral intensities of f−f transitions,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr. and L. Eyring, eds. (Elsevier, 1998), pp. 101–264.
  43. X. Qiao, X. Fan, M. Wang, and X. Zhang, “Up-conversion luminescence and near infrared luminescence of Er3+ in transparent oxyfluoride glass-ceramics,” Opt. Mater. 27, 597–603 (2004). [CrossRef]
  44. W. A. Pisarski, “Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses,” J. Mol. Struct. 744–747, 473–479 (2005). [CrossRef]
  45. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53, 4344–4350(1982). [CrossRef]
  46. L. Petit, T. Cardinal, J. J. Videau, Y. Guyot, G. Boulon, M. Couzi, and T. Buffeteau, “Erbium luminescence properties of niobium-rich oxide glasses,” J. Non-Cryst. Solids 351, 2076–2084 (2005). [CrossRef]
  47. S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the Eu151 isomer shift in oxide glasses,” J. Appl. Phys. 73, 8451–8454 (1993). [CrossRef]
  48. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46, 3305–3310 (1992). [CrossRef]
  49. S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between Eu151 Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B 48, 10591–10594 (1993). [CrossRef]
  50. S. Tanabe, K. Takahara, M. Takahashi, and Y. Kawamoto, “Spectroscopic studies of radiative transitions and upconversion characteristics of Er3+ ions in simple pseudoternary fluoride glasses MFn-BaF2-YF3 (M: Zr, Hf, Al, Sc, Ga, In, or Zn),” J. Opt. Soc. Am. B 12, 786–793 (1995). [CrossRef]
  51. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80(1993). [CrossRef]
  52. G. C. Righini, S. Pelli, M. Fossi, M. Brenci, A. A. Lipovskii, E. V. Kolobkova, A. Speghini, and M. Bettinelli, “Characterization of Er-doped sodium-niobium phosphate glasses,” Proc. SPIE 4282, 210–215 (2001). [CrossRef]
  53. S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local structure works in glass,” J. Non-Cryst. Solids 259, 1–9 (1999). [CrossRef]
  54. M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamamoto, N. Wada, and N. Wada, “Er3+ -doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys. Condens. Matter 17, 7705–7715 (2005). [CrossRef]
  55. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967). [CrossRef]
  56. H. Sun, L. Hu, C. Yu, G. Zhou, Z. Duan, J. Zhang, and Z. Jiang, “Investigation of the effect of fluoride ions introduction on structural, OH− content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses,” Chem. Phys. Lett. 408, 179–185 (2005). [CrossRef]
  57. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318(1997). [CrossRef]
  58. C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977). [CrossRef]
  59. W. S. Tsang, W. M. Yu, C. L. Mak, W. L. Tsui, K. H. Wong, and H. K. Hui, “Evidence of the influence of phonon density on Tm3+ upconversion luminescence in tellurite and germanate glasses,” J. Appl. Phys. 91, 1871–1874 (2002). [CrossRef]
  60. X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties of erbium-doped ultraphosphate glasses for 1.5 μm amplification,” J. Appl. Phys. 89, 3560–3567 (2001). [CrossRef]
  61. M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608(1983). [CrossRef]
  62. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991). [CrossRef] [PubMed]
  63. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Spectroscopic properties of rare-earth ions in heavy metal oxide and phosphate-containing glasses,” Proc. SPIE 3622, 19–30 (1999). [CrossRef]
  64. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002). [CrossRef]
  65. R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” Proc. SPIE 4282, 109–122 (2001). [CrossRef]
  66. R. Rolli, M. Montagna, S. Chaussedent, A. Monteil, V. K. Tikhomirov, and M. Ferrari, “Erbium-doped tellurite glasses with high quantum efficiency and broadband stimulated emission cross section at 1.5 μm,” Opt. Mater. 21, 743–748(2003). [CrossRef]
  67. J. Yang, S. Dai, L. Wen, N. Dai, L. Hu, and Z. Jiang, “Mixed heavy metal effect on emission properties of Er3+-doped borosilicate glasses,” Chin. Opt. Lett. 1, 294–295 (2003).
  68. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited