OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1693–1701

Modulation instabilities in two-core optical fibers

Jin Hua Li, Kin Seng Chiang, and Kwok Wing Chow  »View Author Affiliations


JOSA B, Vol. 28, Issue 7, pp. 1693-1701 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001693


View Full Text Article

Enhanced HTML    Acrobat PDF (1649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modulation instability (MI) of cw states of a two-core fiber, incorporating the effects of coupling-coefficient dispersion (CCD), is studied by solving a pair of generalized, linearly coupled nonlinear Schrödinger equations. CCD refers to the property that the coupling coefficient depends on the optical wavelength, and earlier studies of MI do not account for this physics. CCD does not seriously affect the symmetric/antisymmetric cw, but can drastically modify the MI of the asymmetric state. Generally, new MI frequency bands are produced, and CCD reduces (enhances) the original MI band in the anomalous (normal) dispersion regime. Another remarkable result is the existence of a critical value for the CCD, where the MI gain spectrum undergoes an abrupt change. In the anomalous dispersion regime, a new low-frequency MI band is generated. In the normal dispersion regime, an MI band vanishes, reappears, and then moves up in frequency on crossing this critical value. In both dispersion regimes, the relative magnitude of the low-frequency band and the high-frequency band depends strongly on the total input power. It is possible to switch the dominant MI frequency between a low frequency and a high frequency by tuning the total input power, providing a promising scheme to manipulate MI-related nonlinear effects in two-core fibers. The MI bands are independent of the third-order dispersion, but can be shifted significantly by self-steepening at a sufficiently high total input power. The evolution of MI from a cw input is also demonstrated with a wave propagation study.

© 2011 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.4080) Fiber optics and optical communications : Modulation
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 26, 2011
Revised Manuscript: April 18, 2011
Manuscript Accepted: May 20, 2011
Published: June 16, 2011

Citation
Jin Hua Li, Kin Seng Chiang, and Kwok Wing Chow, "Modulation instabilities in two-core optical fibers," J. Opt. Soc. Am. B 28, 1693-1701 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-7-1693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Martijn de Sterke, “Theory of modulational instability in fiber Bragg gratings,” J. Opt. Soc. Am. B 15, 2660–2667 (1998). [CrossRef]
  2. A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. De Angelis, “Self-pulsing and bistability in nonlinear Bragg gratings,” J. Opt. Soc. Am. B 24, 2229–2237 (2007). [CrossRef]
  3. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987). [CrossRef] [PubMed]
  4. T. Tanemura and K. Kikuchi, “Unified analysis of modulational instability induced by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 20, 2502–2514 (2003). [CrossRef]
  5. J. M. Chávez Boggio, S. Tenenbaum, and H. L. Fragnito, “Amplification of broadband noise pumped by two lasers in optical fibers,” J. Opt. Soc. Am. B 18, 1428–1435 (2001). [CrossRef]
  6. N. C. Panoiu, X. Chen, and R. M. Osgood, “Modulation instability in silicon photonic nanowires,” Opt. Lett. 31, 3609–3611 (2006). [CrossRef] [PubMed]
  7. X. Dai, Y. Xiang, S. Wen, and D. Fan, “Modulation instability of copropagating light beams in nonlinear metamaterials,” J. Opt. Soc. Am. B 26, 564–571 (2009). [CrossRef]
  8. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699(2010). [CrossRef]
  9. G. Millot, S. Pitois, and P. Tchofo Dinda, “Modulational instability processes in optical isotropic fibers under dual-frequency circular polarization pumping,” J. Opt. Soc. Am. B 19, 454–460(2002). [CrossRef]
  10. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Fiber-optical parametric amplifiers with linearly or circularly polarized waves,” J. Opt. Soc. Am. B 20, 2425–2433 (2003). [CrossRef]
  11. C. J. McKinstrie, S. Radic, and C. Xie, “Parametric instabilities driven by orthogonal pump waves in birefringent fibers,” Opt. Express 11, 2619–2633 (2003). [CrossRef] [PubMed]
  12. H. S. Chiu and K. W. Chow, “Effect of birefringence on the modulation instabilities of a system of coherently coupled nonlinear Schrödinger equations,” Phys. Rev. A 79, 065803 (2009). [CrossRef]
  13. P. Tchofo Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010). [CrossRef]
  14. E. A. Ultanir, D. N. Christodoulides, G. I. Stegeman, “Spatial modulation instability in periodically patterned semiconductor optical amplifiers,” J. Opt. Soc. Am. B 23, 341–346 (2006). [CrossRef]
  15. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers, and continuous wave supercontinuum generation,” Opt. Express 17, 21497–21508 (2009). [CrossRef] [PubMed]
  16. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  17. A. Höök and M. Karlsson, “Ultrashort solitons at the minimum-dispersion wavelength: effect of fourth-order dispersion,” Opt. Lett. 18, 1388–1390 (1993). [CrossRef] [PubMed]
  18. T. Tanemura, Y. Ozeki, and K. Kikuchi, “Modulational instability and parametric amplification induced by loss dispersion in optical fibers,” Phys. Rev. Lett. 93, 163902 (2004). [CrossRef] [PubMed]
  19. C. Cambournac, H. Maillotte, E. Lantz, J. M. Dudley, and M. Chauvet, “Spatiotemporal behavior of periodic arrays of spatial solitons in a planar waveguide with relaxing Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 574–585 (2002). [CrossRef]
  20. G. V. Simaeys, P. Emplit, and M. Haelterman, “Experimental study of the reversible behavior of modulational instability in optical fibers,” J. Opt. Soc. Am. B 19, 477–486 (2002). [CrossRef]
  21. J. Wang, L. Li, Z. Li, G. Zhou, D. Mihalache, and B. A. Malomed, “Generation, compression, and propagation of pulse trains under higher order effects,” Opt. Commun. 263, 328–336 (2006). [CrossRef]
  22. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972). [CrossRef]
  23. K.-I. Kitayama and Y. Ishida, “Wavelength-selective coupling of two-core optical fiber: application and design,” J. Opt. Soc. Am. A 2, 90–94 (1985). [CrossRef]
  24. K. S. Chiang, “Propagation of short optical pulses in directional couplers with Kerr nonlinearity,” J. Opt. Soc. Am. B 14, 1437–1443 (1997). [CrossRef]
  25. K. S. Chiang, “Coupled-mode equations for pulse switching in parallel waveguides,” IEEE J. Quantum Electron. 33, 950–954(1997). [CrossRef]
  26. P. Shum, K. S. Chiang, and W. A. Gambling, “Switching dynamics of short optical pulses in a nonlinear directional coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999). [CrossRef]
  27. P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35, 983–989 (1999). [CrossRef]
  28. V. Rastogi, K. S. Chiang, and N. N. Akhmediev, “Soliton states in a nonlinear directional coupler with intermodal dispersion,” Phys. Lett. A 301, 27–34 (2002). [CrossRef]
  29. S. C. Tsang, K. S. Chiang, and K. W. Chow, “Soliton interaction in a two-core optical fiber,” Opt. Commun. 229, 431–439 (2004). [CrossRef]
  30. K. S. Chiang, Y. T. Chow, D. J. Richardson, D. Taverner, L. Dong, L. Reekie, and K. M. Lo, “Experimental demonstration of intermodal dispersion in a two-core optical fiber,” Opt. Commun. 143, 189–192 (1997). [CrossRef]
  31. P. Peterka, P. Honzatko, J. Kanka, V. Matejec, and I. Kasik, “Generation of high-repetition rate pulse trains in a fiber laser through a twin-core fiber,” Proc. SPIE 5036, 376–381 (2003). [CrossRef]
  32. S. Trillo, S. Wabnitz, G. I. Stegeman, and E. M. Wright, “Parametric amplification and modulation instabilities in dispersive nonlinear directional couplers with relaxing nonlinearity,” J. Opt. Soc. Am. B 6, 889–900 (1989). [CrossRef]
  33. R. S. Tasgal and B. A. Malomed, “Modulational instabilities in the dual-core nonlinear optical fiber,” Phys. Scr. 60, 418–422(1999). [CrossRef]
  34. K. S. Chiang, “Intermodal dispersion in two-core optical fibers,” Opt. Lett. 20, 997–999 (1995). [CrossRef] [PubMed]
  35. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15, 4795–4803 (2007). [CrossRef] [PubMed]
  36. M. Liu and K. S. Chiang, “Pulse propagation in a decoupled two-core fiber,” Opt. Express 18, 21261–21268 (2010). [CrossRef] [PubMed]
  37. S. C. Wen and D. Y. Fan, “Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions,” J. Opt. Soc. Am. B 19, 1653–1659 (2002). [CrossRef]
  38. W. C. Xu, S. M. Zhang, W. C. Chen, A. P. Luo, and S. H. Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001). [CrossRef]
  39. I. M. Uzunov, “Influence of intrapulse Raman scattering on the modulational instability in optical fibers,” Opt. Quantum Electron. 22, 529–533 (1990). [CrossRef]
  40. G. Millot, P. Tchofo Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001). [CrossRef]
  41. L. D. Carr, J. N. Kutz, and W. P. Reinhardt, “Stability of stationary states in the cubic nonlinear Schrodinger equation: applications to the Bose–Einstein condensate,” Phys. Rev. E 63, 066604 (2001). [CrossRef]
  42. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580–1583 (1982). [CrossRef]
  43. A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, J. Fini, R. T. Bise, and D. J. DiGiovanni, “All-optical switching and multifrequency generation in a dual-core photonic crystal fiber,” Opt. Lett. 31, 1480–1482 (2006). [CrossRef] [PubMed]
  44. M. Liu and K. S. Chiang, “Propagation of ultrashort pulses in a nonlinear two-core photonic crystal fiber,” Appl. Phys. B 98, 815–820 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited