OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1693–1701

Modulation instabilities in two-core optical fibers

Jin Hua Li, Kin Seng Chiang, and Kwok Wing Chow  »View Author Affiliations


JOSA B, Vol. 28, Issue 7, pp. 1693-1701 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001693


View Full Text Article

Enhanced HTML    Acrobat PDF (1649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modulation instability (MI) of cw states of a two-core fiber, incorporating the effects of coupling-coefficient dispersion (CCD), is studied by solving a pair of generalized, linearly coupled nonlinear Schrödinger equations. CCD refers to the property that the coupling coefficient depends on the optical wavelength, and earlier studies of MI do not account for this physics. CCD does not seriously affect the symmetric/antisymmetric cw, but can drastically modify the MI of the asymmetric state. Generally, new MI frequency bands are produced, and CCD reduces (enhances) the original MI band in the anomalous (normal) dispersion regime. Another remarkable result is the existence of a critical value for the CCD, where the MI gain spectrum undergoes an abrupt change. In the anomalous dispersion regime, a new low-frequency MI band is generated. In the normal dispersion regime, an MI band vanishes, reappears, and then moves up in frequency on crossing this critical value. In both dispersion regimes, the relative magnitude of the low-frequency band and the high-frequency band depends strongly on the total input power. It is possible to switch the dominant MI frequency between a low frequency and a high frequency by tuning the total input power, providing a promising scheme to manipulate MI-related nonlinear effects in two-core fibers. The MI bands are independent of the third-order dispersion, but can be shifted significantly by self-steepening at a sufficiently high total input power. The evolution of MI from a cw input is also demonstrated with a wave propagation study.

© 2011 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.4080) Fiber optics and optical communications : Modulation
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 26, 2011
Revised Manuscript: April 18, 2011
Manuscript Accepted: May 20, 2011
Published: June 16, 2011

Citation
Jin Hua Li, Kin Seng Chiang, and Kwok Wing Chow, "Modulation instabilities in two-core optical fibers," J. Opt. Soc. Am. B 28, 1693-1701 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-7-1693

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited