OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1735–1739

Finite-size effect on the surface deformation thermal mirror method

N. G. C. Astrath, L. C. Malacarne, V. S. Zanuto, M. P. Belancon, R. S. Mendes, M. L. Baesso, and C. Jacinto  »View Author Affiliations


JOSA B, Vol. 28, Issue 7, pp. 1735-1739 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001735


View Full Text Article

Enhanced HTML    Acrobat PDF (567 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The finite-size effect on the thermal mirror (TM) experiments is described. The time-resolved thermoelastic deformation equation is solved and compared to the semi-infinite solution. To determine the applicability of the semi-infinite model, experiments were performed in optical glasses and the quantitative results compared to both models. The analytical results presented here were found to be in excellent agreement with the numerical finite elemental analysis model. Modeling and experiment showed that the TM transient signal is strongly affected as the sample thickness is reduced. The results of the finite-size model demonstrate that it is intrinsically more accurate to characterize physical properties of low optical absorption thin samples, which suggests that the model and the TM method could even be applied to study very thin films down to the micrometer scale.

© 2011 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(300.6430) Spectroscopy : Spectroscopy, photothermal
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Photothermal Effects

History
Original Manuscript: May 11, 2011
Manuscript Accepted: May 20, 2011
Published: June 23, 2011

Citation
N. G. C. Astrath, L. C. Malacarne, V. S. Zanuto, M. P. Belancon, R. S. Mendes, M. L. Baesso, and C. Jacinto, "Finite-size effect on the surface deformation thermal mirror method," J. Opt. Soc. Am. B 28, 1735-1739 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-7-1735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).
  2. A.Mandelis, ed., Progress in Photoacoustic and Photothermal Science and Technology (Elsevier, 1991).
  3. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, 1996).
  4. M. A. Olmstead, N. M. Amer, and S. Kohn, “Photothermal displacement spectroscopy—an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983). [CrossRef]
  5. P. Kuo and M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990). [CrossRef] [PubMed]
  6. J. Cheng and S. Zhang, “3-dimensional theory to study photothermal phenomena of semiconductors. 1. Modulated optical reflectance,” J. Appl. Phys. 70, 6999–7006 (1991). [CrossRef]
  7. B. C. Li, Z. Zhen, and S. He, “Modulated photothermal deformation in solids,” J. Phys. D: Appl. Phys. 24, 2196–2201 (1991). [CrossRef]
  8. P. S. Jeon, J. H. Kim, H. J. Kim, and J. Yoo, “The measurement of thermal diffusivities for semi-infinite solids using the photothermal displacement method,” Thermochim. Acta 494, 65–70(2009). [CrossRef]
  9. D. Albagli, M. Dark, C. von Rosenberg, L. Perelman, I. Itzkan, and M. S. Feld, “Laser-induced thermoelastic deformation—a 3-dimensional solution and its application to the ablation of biological tissue,” Med. Phys. 21, 1323–1331 (1994). [CrossRef] [PubMed]
  10. T. Elperin and G. Rudin, “Thermal mirror method for measuring physical properties of multilayered coatings,” Int. J. Thermophys. 28, 60–82 (2007). [CrossRef]
  11. J. W. Fang and S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639(1998). [CrossRef]
  12. J. C. Cheng, L. Wu, and S. Y. Zhang, “Thermoelastic response of pulsed photothermal deformation of thin plates,” J. Appl. Phys. 76, 716–722 (1994). [CrossRef]
  13. G. L. Bennis, R. Vyas, R. Gupta, S. Ang, and W. D. Brown, “Thermal diffusivity measurement of solid materials by the pulsed photothermal displacement technique,” J. Appl. Phys. 84, 3602–3610 (1998). [CrossRef]
  14. B. C. Li, “Three-dimensional theory of pulsed photothermal deformation,” J. Appl. Phys. 68, 482–487 (1990). [CrossRef]
  15. N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett. 91, 191908 (2007). [CrossRef]
  16. L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92, 131903(2008). [CrossRef]
  17. F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Time-resolved thermal mirror method: a theoretical study,” J. Appl. Phys. 104, 053520 (2008). [CrossRef]
  18. F. B. G. Astrath, N. G. C. Astrath, J. Shen, J. Zhou, L. C. Malacarne, P. R. B. Pedreira, and M. L. Baesso, “Time-resolved thermal mirror technique with top-hat cw laser excitation,” Opt. Express 16, 12214–12219 (2008). [CrossRef] [PubMed]
  19. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, C. E. Gu, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, and M. L. Baesso, “Top-hat cw laser induced thermal mirror: a complete model for material characterization,” Appl. Phys. B 94, 473–481(2009). [CrossRef]
  20. W. Nowacki, Thermoelasticity (Pergamon, 1982).
  21. L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65, 99–104(2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited