OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1793–1797

Design of efficient plasmonic thin-film solar cells based on mode splitting

Tong Li, Lei Dai, and Chun Jiang  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1793-1797 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001793


View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new efficient plasmonic structure for solar energy absorption is designed. Numerical simulations demonstrate the absorption enhancement in a symmetrical structure based on the mode coupling between the localized plasmonic mode in an Ag strip pair and the excited waveguide mode in a silicon slab. Then the method of symmetry breaking is used to excite the dark modes that can further enhance the absorption ability. The new structure is compared with a bare thin-film Si solar cell, and results show that the integrated light harvest efficiency is greatly improved for the TM polarization in such thin geometry.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 25, 2011
Revised Manuscript: May 29, 2011
Manuscript Accepted: June 7, 2011
Published: July 5, 2011

Citation
Tong Li, Lei Dai, and Chun Jiang, "Design of efficient plasmonic thin-film solar cells based on mode splitting," J. Opt. Soc. Am. B 28, 1793-1797 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1793


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (University of New South Wales, 1998).
  2. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010). [CrossRef] [PubMed]
  3. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102(2008). [CrossRef]
  4. T. Wakamatsu, K. Saito, Y. Sakakibara, and H. Yokoyama, “Surface plasmon-enhanced photocurrent in organic photoelectric cells,” Jpn. J. Appl. Phys. 36, 155–158 (1997). [CrossRef]
  5. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Solar Energy Mater. Solar Cells 37, 337–348 (1995). [CrossRef]
  6. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Solar Energy Mater. Solar Cells 94, 1481–1486 (2010). [CrossRef]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  9. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18, A139–A146 (2010). [CrossRef] [PubMed]
  10. C. Hägglund and B. Kasemo, “Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits,” Opt. Express 17, 11944–11957 (2009). [CrossRef] [PubMed]
  11. F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–A220 (2010). [CrossRef] [PubMed]
  12. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007). [CrossRef]
  13. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  14. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642(2008). [CrossRef] [PubMed]
  15. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010). [CrossRef] [PubMed]
  16. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008). [CrossRef]
  17. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009). [CrossRef] [PubMed]
  18. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18, A620–A630 (2010). [CrossRef] [PubMed]
  19. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?,” Opt. Express 17, 20975–20990 (2009). [CrossRef] [PubMed]
  20. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009). [CrossRef] [PubMed]
  21. S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18, A528–A535 (2010). [CrossRef] [PubMed]
  22. J.-Y. Wang, F.-J. Tsai, J.-J. Huang, C.-Y. Chen, N. Li, Y.-W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18, 2682–2694 (2010). [CrossRef] [PubMed]
  23. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  24. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009). [CrossRef]
  25. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  26. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Solar Energy Mater. Solar Cells 93, 1978–1985 (2009). [CrossRef]
  27. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008). [CrossRef]
  28. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010). [CrossRef]
  29. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  30. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef] [PubMed]
  31. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef] [PubMed]
  32. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000). [CrossRef]
  33. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119(1983). [CrossRef] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  35. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175(2008). [CrossRef] [PubMed]
  36. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18, 13407–13417 (2010). [CrossRef] [PubMed]
  37. F. Lasnier and T. G. Ang, Photovoltaic Engineering Handbook (Adam Hilger, 1990).
  38. American Society for Testing and Materials, “ASTM standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” (2003), http://www.astm.org/Standards/G173.htm .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited