OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1798–1806

Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton

Chien-Jing Chen, Jia-Shiang Chen, and Yu-Bin Chen  »View Author Affiliations

JOSA B, Vol. 28, Issue 8, pp. 1798-1806 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work numerically investigates optical responses (absorptance, reflectance, and transmittance) of lossy metallic slit arrays at the excitation of a magnetic polariton (MP). The studied wavenumber is between 1.2 × 10 3 and 2.5 × 10 4 cm 1 for the spectral regions in which aluminum and tungsten are lossy, which do not coincide. The loss of silver is negligible. Optical response spectra clearly specify the resonance modes, excitation frequency, and impacts from loss, as well as other mechanisms. The inductance and capacitance circuit model predicting MP frequency is not always valid, and the best fitting constant varies with material, slit geometry, angle of incidence, and wavelength. Electromagnetic fields in the near field further illustrate the interplay between the incidence and slit arrays.

© 2011 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.5420) Optics at surfaces : Polaritons
(260.5740) Physical optics : Resonance
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: April 14, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 6, 2011
Published: July 5, 2011

Chien-Jing Chen, Jia-Shiang Chen, and Yu-Bin Chen, "Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton," J. Opt. Soc. Am. B 28, 1798-1806 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. García-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999). [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  3. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006). [CrossRef] [PubMed]
  4. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  5. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006). [CrossRef] [PubMed]
  6. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transfer 109, 608–619 (2008). [CrossRef]
  7. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008). [CrossRef] [PubMed]
  8. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009). [CrossRef]
  9. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15, 16651–16656 (2007). [CrossRef] [PubMed]
  10. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007). [CrossRef]
  11. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  12. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009). [CrossRef]
  13. J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009). [CrossRef]
  14. S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009). [CrossRef]
  15. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155423 (2003). [CrossRef]
  16. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  19. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  20. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  21. S. J. Xiong and R. B. Ouyang, “Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field,” J. Phys. 7, 3431–3444 (1995). [CrossRef]
  22. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005). [CrossRef]
  23. Y.-B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17, 3130–3140(2009). [CrossRef] [PubMed]
  24. R. M. Eisberg, Fundamentals of Modern Physics (Wiley, 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited