OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1807–1816

Spatiotemporal evolution of light during propagation in filamentation regime

Benjamín Alonso, Íñigo J. Sola, Julio San Román, Óscar Varela, and Luis Roso  »View Author Affiliations

JOSA B, Vol. 28, Issue 8, pp. 1807-1816 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The full description of the evolution of light during its nonlinear propagation represents a valuable help to the complete understanding of important nonlinear phenomena such as light filamentation. In this paper we present a comparison between theoretical and experimental results of the spatiotemporal structure of a light filament at different propagation distances. In order to obtain the experimental spatiotemporal structure, we have used a technique based on spatially resolved spectral interferometry called STARFISH, for spatiotemporal amplitude-and-phase reconstruction by Fourier transform of interference spectra of high-complex beams. We have been able to observe important nonlinear pulse dynamics during the nonlinear propagation, including pulse splitting and the subsequent competition among the pulses that result from the splitting, obtaining a full insight into the general nonlinear behavior.

© 2011 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

Original Manuscript: January 19, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 26, 2011
Published: July 5, 2011

Benjamín Alonso, Íñigo J. Sola, Julio San Román, Óscar Varela, and Luis Roso, "Spatiotemporal evolution of light during propagation in filamentation regime," J. Opt. Soc. Am. B 28, 1807-1816 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. San Roman, C. Ruiz, J. A. Pérez, D. Delgado, C. Mendez, L. Plaja, and L. Roso, “Nonlinear Young’s double-slit experiment,” Opt. Express 14, 2817–2824 (2006). [CrossRef]
  2. K. D. Moll, A. L. Gaeta, and G. Fibich, “Self-similar optical wave collapse: observation of the Townes profile,” Phys. Rev. Lett. 90, 203902 (2003). [CrossRef] [PubMed]
  3. C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005). [CrossRef] [PubMed]
  4. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “Propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005) [CrossRef]
  5. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995). [CrossRef] [PubMed]
  6. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  7. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). [CrossRef]
  8. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2004). [CrossRef]
  9. J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003). [CrossRef] [PubMed]
  10. J. Kasparian and J. P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2008). [CrossRef] [PubMed]
  11. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004). [CrossRef]
  12. S. Tzortzakis, G. Méchain, G. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, and P. Encrenaz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27, 1944–1946 (2002). [CrossRef]
  13. K. Ishikawa, H. Kumagai, and K. Midorikawa, “High-power regime of femtosecond-laser pulse propagation in silica: multiple cone formation,” Phys. Rev. E 66, 056608 (2002). [CrossRef]
  14. A. Couairon, M. Franco, G. Méchain, T. Olivier, B. Prade, and A. Mysyrowicz, “Femtosecond filamentation in air at low pressures: Part I: theory and numerical simulations,” Opt. Commun. 259, 265–273 (2006). [CrossRef]
  15. S. Champeaux, L. Bergé, D. Gordon, A. Ting, J. Peñano, and P. Sprangle, “(3+1)-dimensional numerical simulations of femtosecond laser filaments in air: toward a quantitative agreement with experiments,” Phys. Rev. E 77, 036406 (2008). [CrossRef]
  16. H. Schillinger and R. Sauerbrey, “Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses,” Appl. Phys. B 68, 753–756 (1999). [CrossRef]
  17. J. Bernhardt, W. Liu, F. Théberge, H. L. Xu, J. F. Daigle, M. Châteauneuf, J. Dubois, and S. L. Chin, “Spectroscopic analysis of femtosecond laser plasma filament in air,” Opt. Commun. 281, 1268–1274 (2008). [CrossRef]
  18. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index major air components,” Opt. Express 17, 13429–13434 (2009). [CrossRef] [PubMed]
  19. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, “Spatiotemporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15, 5394–5404 (2007). [CrossRef] [PubMed]
  20. S. Minardi, A. Gopal, A. Couairon, G. Tamoašuskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy,” Opt. Lett. 34, 3020–3022(2009). [CrossRef] [PubMed]
  21. I. Blonskyi, V. Kadan, O. Shpotyuk, and I. Dmituk, “Manifestations of sub- and superluminality in filamented femtosecond laser pulse in fused silica,” Opt. Commun. 282, 1913–1917(2009). [CrossRef]
  22. J. Trull, O. Jedrkiewicz, P. Di Trapani, A. Matijošius, A. Varanavičius, G. Valiulis, R. Danielius, E. Kucinskas, A. Piskarskas, and S. Trillo, “Spatiotemporal three-dimensional mapping of nonlinear X waves,” Phys. Rev. E 69, 026607 (2004). [CrossRef]
  23. A. Matijošius, J. Trull, P. Di Trapani, A. Dubietis, R. Piskarskas, A. Varanavičius, and A. Piskarskas, “Nonlinear space–time dynamics of ultrashort wave packets in water,” Opt. Lett. 29, 1123–1125 (2004). [CrossRef] [PubMed]
  24. S. Minardi, M. A. C. Potenza, and J. Trull, “Intensity mapping of three-dimensional optical wave packet: holographic properties and applications,” in Trends in Laser and Electro-optical Research, W.T.Arkin, ed. (2006), pp. 151–182.
  25. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatiotemporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74, S209–S217 (2002). [CrossRef]
  26. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space–time characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27, 548–550 (2002). [CrossRef]
  27. P. Gabolde and R. Trebino, “Single-shot measurement of the full spatiotemporal field of ultrashort pulses with multispectral digital holography,” Opt. Express 14, 11460–11467(2006). [CrossRef] [PubMed]
  28. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatiotemporal electric field of focusing ultrashort pulses,” Opt. Express 15, 10219–10230 (2007). [CrossRef] [PubMed]
  29. P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari, and R. Trebino, “Measuring the spatiotemporal field of ultrashort Bessel-X pulses,” Opt. Lett. 34, 2276–2278 (2009). [CrossRef] [PubMed]
  30. B. Alonso, I. J. Sola, O. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex beams,” J. Opt. Soc. Am. B 27, 933–940 (2010). [CrossRef]
  31. O. Mendoza-Yero, B. Alonso, O. Varela, G. Mínguez-Vega, I. J. Sola, J. Lancis, V. Climent, and L. Roso, “Spatiotemporal characterization of ultrashort pulses diffracted by circularly symmetric hard-edge apertures: theory and experiment,” Opt. Express 18, 20900–20911 (2010). [CrossRef] [PubMed]
  32. C. G. Durfee, D. E. Adams, and J. A. Squier, “Spatiotemporal characterization of ionizing wavefronts in a filament,” presented at Third International Symposium on Filamentation, Crete, Greece, 31 May–5 June 2010.
  33. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, and J. A. Arnaud, “Nouvelle méthode de mesure de la réponse impulsionnelle des fibers optiques,” Appl. Opt. 19, 3749–3755(1980). [CrossRef] [PubMed]
  34. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  35. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998). [CrossRef]
  36. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997). [CrossRef]
  37. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001). [CrossRef]
  38. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285(1997). [CrossRef]
  39. A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B 19, 1117–1131(2002). [CrossRef]
  40. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998). [CrossRef]
  41. L. Berge and A. Couairon, “Gas-induced solitons,” Phys. Rev. Lett. 86, 1003–1006 (2001). [CrossRef] [PubMed]
  42. S. Skupin, L. Bergé, U. Peschel, and F. Lederer, “Interaction of femtosecond light filaments with obscurants in aerosols,” Phys. Rev. Lett. 93, 023901 (2004). [CrossRef] [PubMed]
  43. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  44. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002 (2004). [CrossRef] [PubMed]
  45. L. Bergé, S. Skupin, and G. Steinmeyer, “Self-recompression of laser filaments exiting a gas cell,” Phys. Rev. A 79, 033838(2009). [CrossRef]
  46. J. Zhang, Z. H. Lu, and L. J. Wang, “Precision refractive index measurements of air, N2, O2, Ar, and CO2 with a frequency comb,” Appl. Opt. 47, 3143–3151 (2008). [CrossRef] [PubMed]
  47. C. R. Giuliano, J. H. Marburger, and A. Yariv, Appl. Phys. Lett. 21, 58–60 (1972). [CrossRef]
  48. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving focus versus self-waveguiding model for long distance propagation of femtosecond pulses in air,” IEEE J. Quantum Electron. 35, 1771–1776 (1999). [CrossRef]
  49. C. Bree, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma-induced pulse breaking in filamentary self-compression,” Laser Phys. 20, 1107 (2010). [CrossRef]
  50. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhanvoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604(2006). [CrossRef]
  51. O. Varela, B. Alonso, I. J. Sola, J. San Román, A. Zaïr, C. Méndez, and L. Roso, “Self-Compression controlled by the chirp of the input pulse,” Opt. Lett. 35, 3649–3652(2010). [CrossRef] [PubMed]
  52. M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney, “On the higher-order Kerr effect in femtosecond filaments,” Opt. Lett. 35, 3685–3687 (2010). [CrossRef] [PubMed]
  53. P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-Order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104, 103903 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited