OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1817–1824

Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film

Yaroslav Cherednikov, Nail A. Inogamov, and Herbert M. Urbassek  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1817-1824 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001817


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study UV-laser-induced melting and ablation of 10 nm thick LiF films by UV laser irradiation. Our method combines a molecular dynamics scheme for LiF and a set of equations describing the temporal evolution of the conduction-electron density and temperature due to laser irradiation. We find that with increasing laser fluence, the crystal is heated, then melts, then temporary voids form, until it finally ablates, and even multifragmentation occurs. This sequence of events parallels that found in other materials, such as in metals, with similar values for the relative energization thresholds, if normalized to the cohesive energy of the material or to the melting temperature. The ablation mechanism is shown to be mechanical spallation of the molten crystal due to the high tensile pressure building up after the oscillatory relaxation of the initial high thermoelastic pressure.

© 2011 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(160.3220) Materials : Ionic crystals
(310.3840) Thin films : Materials and process characterization
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Thin Films

History
Original Manuscript: February 7, 2011
Revised Manuscript: May 21, 2011
Manuscript Accepted: May 24, 2011
Published: July 5, 2011

Citation
Yaroslav Cherednikov, Nail A. Inogamov, and Herbert M. Urbassek, "Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film," J. Opt. Soc. Am. B 28, 1817-1824 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002). [CrossRef]
  2. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003). [CrossRef]
  3. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A 79, 977–981 (2004). [CrossRef]
  4. C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005). [CrossRef]
  5. A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008). [CrossRef]
  6. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009). [CrossRef]
  7. A. K. Upadhyay and H. M. Urbassek, “Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study,” J. Phys. D 38, 2933–2941 (2005). [CrossRef]
  8. A. K. Upadhyay and H. M. Urbassek, “Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study,” J. Phys. D 40, 3518–3526 (2007). [CrossRef]
  9. A. K. Upadhyay and H. M. Urbassek, “Response of ultrathin metal films to ultrafast laser irradiation: a comparative molecular-dynamics study,” J. Phys. Conf. Ser. 59, 68–74 (2007). [CrossRef]
  10. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010). [CrossRef]
  11. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987). [CrossRef]
  12. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003). [CrossRef] [PubMed]
  13. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006). [CrossRef]
  14. N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009). [CrossRef]
  15. M. Nishikino, N. Hasegawa, T. Kawachi, H. Yamatani, K. Sukegawa, and K. Nagashima, “Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration,” Appl. Opt. 47, 1129–1134 (2008). [CrossRef] [PubMed]
  16. A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009). [CrossRef] [PubMed]
  17. A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009). [CrossRef]
  18. I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer, 1981). [CrossRef]
  19. D. A. Young, “Molecular dynamics simulation of swift ion damage in LiF,” Nucl. Instrum. Meth. B 225, 231–240 (2004). [CrossRef]
  20. V. E. Fortov, “Equations of state of condensed media,” J. Appl. Mech. Tech. Phys. 13, 894–902 (1972) [translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 6, 156–166 (1972)]. [CrossRef]
  21. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.
  22. http://teos.ficp.ac.ru/rusbank/.
  23. H. B. Huntington, “The elastic constants of crystals,” Sol. State Phys. 7, 213–351 (1958). [CrossRef]
  24. I. Jackson, “Phase relations in the system LiF-MgF2 at elevated pressures: implications for the proposed mixed-oxide zone of the Earth’s mantle,” Phys. Earth Planet. Inter. 14, 86–94 (1977). [CrossRef]
  25. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, 1954).
  26. V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000). [CrossRef]
  27. L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement regimes,” J. Appl. Phys. 88, 1281–1298 (2000). [CrossRef]
  28. V. P. Skripov and M. Z. Faizullin, Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity (Wiley-VCH, 2006). [CrossRef]
  29. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).
  30. H. M. Urbassek and Y. Rosandi, “Insight from molecular dynamics simulation into ultrashort-pulse laser ablation,” Proc. SPIE 7842, 784214 (2010). [CrossRef]
  31. V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Thermo. 43, 467–470(2011). [CrossRef]
  32. P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma,” Phys. Rev. B 42, 7163–7173 (1990). [CrossRef]
  33. P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B 49, 7299–7305 (1994). [CrossRef]
  34. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002). [CrossRef]
  35. T. Dumitrică and R. E. Allen, “Femtosecond-scale response of GaAs to ultrafast laser pulses,” Phys. Rev. B 66, 081202(2002). [CrossRef]
  36. E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008). [CrossRef] [PubMed]
  37. E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005). [CrossRef]
  38. V. V. Stegailov, “Stability of LiF crystal in the warm dense matter state,” Contrib. Plasma Phys. 50, 31–34 (2010). [CrossRef]
  39. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002). [CrossRef] [PubMed]
  40. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004). [CrossRef]
  41. N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004). [CrossRef]
  42. H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006). [CrossRef]
  43. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010). [CrossRef]
  44. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005). [CrossRef]
  45. D. A. Young, “Evolution of a model ion explosion spike in potassium chloride by molecular dynamics,” Europhys. Lett. 59, 540–545 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited