OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1831–1836

Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber

Xin Yan, Guanshi Qin, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1831-1836 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001831


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study tellurite glasses as the Raman gain media for the soliton self-frequency shift (SSFS). The Raman response function, Raman fraction, and Raman time constant of tellurite glasses are obtained from the Raman gain spectra. We evaluate the performance of SSFS based on the Raman gain coefficient spectra and generalized nonlinear Schrödinger equation. Our results show that the amount of SSFS is directly proportional to the Raman time constant. The most efficient tellurite glass for SSFS is clarified. It is shown that the tellurite glasses are promising materials for nonlinear optics applications.

© 2011 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 4, 2011
Revised Manuscript: May 10, 2011
Manuscript Accepted: June 6, 2011
Published: July 6, 2011

Citation
Xin Yan, Guanshi Qin, Meisong Liao, Takenobu Suzuki, and Yasutake Ohishi, "Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber," J. Opt. Soc. Am. B 28, 1831-1836 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002). [CrossRef]
  2. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001). [CrossRef]
  3. M. G. Banaee and J. F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484–1489 (2006). [CrossRef]
  4. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008). [CrossRef] [PubMed]
  5. M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, and O. E. Martinez, “Femtosecond soliton source with fast and broad spectral tenability,” Opt. Lett. 34, 842–844 (2009). [CrossRef] [PubMed]
  6. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004). [CrossRef]
  7. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651–13656 (2008). [CrossRef] [PubMed]
  8. R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006). [CrossRef]
  9. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band tellurite-based fiber Raman amplifier,” J. Lightwave Technol. 21, 1300–1306 (2003). [CrossRef]
  10. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardon, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt. Lett. 28, 1126–1128 (2003). [CrossRef] [PubMed]
  11. R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007). [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  13. E. E. Serebryannikov, C. Rivero, R. Stegeman, and A. M. Zheltikov, “Soliton transients and supercontinuum generation in high-Raman-gain material,” J. Opt. Soc. Am. B 24, 137–141(2007). [CrossRef]
  14. M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009). [CrossRef] [PubMed]
  15. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010). [CrossRef]
  16. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002). [CrossRef]
  17. G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007). [CrossRef]
  18. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited