OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1837–1843

Efficient computation of equifrequency surfaces and density of states in photonic crystals using Dirichlet-to-Neumann maps

Victor Liu and Shanhui Fan  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1837-1843 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001837


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an efficient method for computing the equifrequency surfaces (EFSs) and density of states of a photonic crystal. The method is based on repeatedly solving a small nonlinear eigenvalue problem formulated using the Dirichlet-to-Neumann map of the unit cell. A simple contouring algorithm is presented for sampling EFSs as well as computing group velocity vectors. We compare our method with several published results to demonstrate its efficiency and accuracy.

© 2011 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(160.5298) Materials : Photonic crystals

ToC Category:
Mathematical Methods in Physics

History
Original Manuscript: February 15, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: June 1, 2011
Published: July 6, 2011

Citation
Victor Liu and Shanhui Fan, "Efficient computation of equifrequency surfaces and density of states in photonic crystals using Dirichlet-to-Neumann maps," J. Opt. Soc. Am. B 28, 1837-1843 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1837


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  2. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  3. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003). [CrossRef]
  4. D. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823–1831 (2004). [CrossRef] [PubMed]
  5. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103, 033902 (2009). [CrossRef] [PubMed]
  6. P. Russel and T. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol. 17, 1982–1988 (1999). [CrossRef]
  7. Y. A. Urzhumov and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010). [CrossRef]
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  9. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton Univ. Press, 2008).
  10. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” arXiv:0910.3981v2 (2009).
  11. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010). [CrossRef] [PubMed]
  12. M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, “Enhanced photonic band-gap confinement via van Hove saddle point singularities,” Phys. Rev. Lett. 96, 033904 (2006). [CrossRef] [PubMed]
  13. G. Gilat and L. J. Raubenheimer, “Accurate numerical method for calculating frequency-distribution functions in solids,” Phys. Rev. 144, 390–395 (1966). [CrossRef]
  14. G. Lehmann and M. Taut, “On the numerical calculation of the density of states and related properties,” Phys. Status Solidi B 54, 469–477 (1972). [CrossRef]
  15. J. Hama, M. Watanabe, and T. Kato, “Correctly weighted tetrahedron method for k-space integration,” J. Phys. Condens. Matter 2, 7445 (1990). [CrossRef]
  16. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004). [CrossRef]
  17. C. J. Pickard and M. C. Payne, “Extrapolative approaches to brillouin-zone integration,” Phys. Rev. B 59, 4685–4693 (1999). [CrossRef]
  18. E. Moreno, D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B 65, 155120 (2002). [CrossRef]
  19. J. Yuan and Y. Y. Lu, “Photonic bandgap calculations with Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. A 23, 3217–3222(2006). [CrossRef]
  20. Y. Huang, Y. Y. Lu, and S. Li, “Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. B 24, 2860–2867 (2007). [CrossRef]
  21. Z. Hu and Y. Y. Lu, “Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps,” Opt. Express 16, 17383–17399(2008). [CrossRef] [PubMed]
  22. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic crystal based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011). [CrossRef] [PubMed]
  23. Z. Hu and Y. Y. Lu, “Improved bends for two-dimensional photonic crystal waveguides,” Opt. Commun. 284, 2812–2816(2011). [CrossRef]
  24. J. Yuan, Y. Y. Lu, and X. Antoine, “Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps,” J. Comp. Phys. 227, 4617–4629 (2008). [CrossRef]
  25. L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001). [CrossRef]
  26. Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  27. T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Comput. Graph. 30, 854–879 (2006). [CrossRef]
  28. J.-D. Boissonnat and S. Oudot, “Provably good sampling and meshing of surfaces,” Graph. Models 67, 405–451 (2005). [CrossRef]
  29. A. Quarteroni, Numerical Mathematics (Springer, 2000).
  30. G. Strang, Linear Algebra and Its Applications (Harcourt Brace Jovanovich, 1988).
  31. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999). [CrossRef]
  32. A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, no. 105 in Other Titles in Applied Mathematics, 2nd ed. (SIAM, 2008).
  33. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  34. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited