OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1874–1881

Theory of hybrid photorefractive plasmonic liquid crystal cells

Keith R. Daly, Stephen Abbott, Giampaolo D’Alessandro, David C. Smith, and Malgosia Kaczmarek  »View Author Affiliations

JOSA B, Vol. 28, Issue 8, pp. 1874-1881 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the theory of optical waveguides to study analytically the voltage-dependent response of a surface plasmon polariton (SPP) at the interface between a photorefractive liquid crystal cell and a semi-infinite gold layer. For sufficiently large electric fields the alignment of the liquid crystal can be calculated analytically. The resulting correction to the SPP dispersion relation is then determined in terms of the applied field and the liquid crystal surface alignment relative to the SPP propagation direction. The approximate analytic techniques developed here are shown to be accurate when compared to rigorous diffraction theory and experimental measurements. The approximate equations are a powerful tool of general application. They can be used to study SPP propagation at the interface between a metal and any nonhomogeneous or anisotropic dielectric and are also applicable to self-assembled monolayers and biosensing applications.

© 2011 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: April 5, 2011
Manuscript Accepted: June 2, 2011
Published: July 11, 2011

Keith R. Daly, Stephen Abbott, Giampaolo D’Alessandro, David C. Smith, and Malgosia Kaczmarek, "Theory of hybrid photorefractive plasmonic liquid crystal cells," J. Opt. Soc. Am. B 28, 1874-1881 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005). [CrossRef]
  2. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957). [CrossRef]
  3. I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett. 85, 3017–3019(2004). [CrossRef]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef] [PubMed]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem 54, 3–15(1999). [CrossRef]
  6. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597 (2002). [CrossRef]
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232(2003). [CrossRef] [PubMed]
  8. M. Malmqvist, “Biospecific interaction analysis using biosensor technology,” Nature 361, 186–187 (1993). [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  10. U. Bortolozzo and S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008). [CrossRef]
  11. G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16, 4015–4022(2008). [CrossRef] [PubMed]
  12. O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Reshetnyak, and Y. Reznikov, “Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals,” J. Opt. Soc. Am. B 24, 1512–1516 (2007). [CrossRef]
  13. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Zeitschrift Fuer Naturforschung, Teil A 23, 2135–2136 (1968).
  14. S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902(1990). [CrossRef]
  15. K. R. Welford and J. R. Sambles, “Detection of surface director reorientation in a nematic liquid crystal,” Appl. Phys. Lett. 50, 871–873 (1987). [CrossRef]
  16. R. A. Innes and J. R. Sambles, “Optical nonlinearity in a nematic liquid crystal using surface plasmon-polaritons,” Opt. Commun. 64, 288–292 (1987). [CrossRef]
  17. R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large optical bistability in a nematic liquid crystal using surface plasmon-polaritons,” Phys. Lett. A 135, 357–362 (1989). [CrossRef]
  18. K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–105(1987). [CrossRef]
  19. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008). [CrossRef]
  20. Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759–2761 (1995). [CrossRef]
  21. W. P. Chen and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189–191 (1981). [CrossRef]
  22. E. Fontana, “Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media,” Appl. Opt. 45, 7632–7642 (2006). [CrossRef] [PubMed]
  23. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978). [CrossRef]
  24. W. P. Chen and J. M. Chen, “Surface plasma wave study of submonolayer Cs and Cs O covered Ag surfaces,” Surf. Sci. 91, 601–617 (1980). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation Interference and Diffraction of Light, 6th ed. (Cambridge University, 1980). [PubMed]
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).
  27. R. H. Self, C. P. Please, and T. J. Sluckin, “Deformation of nematic liquid crystals in an electric field,” Eur. J. Appl. Math. 13, 1–23 (2002). [CrossRef]
  28. E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990). [CrossRef]
  29. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510(1972). [CrossRef]
  30. J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 51–61 (2005). [CrossRef]
  31. J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005). [CrossRef]
  32. E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited