OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1899–1904

Bright three-color continuous-variable entanglement generated by a cascaded sum-frequency process in an optical cavity

Youbin Yu and Huaijun Wang  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1899-1904 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001899


View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bright three-color continuous-variable (CV) entanglement generated by a cascaded sum-frequency process in an optical cavity is investigated. The second- and fourth-harmonic beams can be generated by two quasi-phase-matched cascaded sum-frequency processes in a quasi-periodic optical superlattice. Quantum correlations among the fundamental and second- and fourth-harmonic beams are calculated and discussed by applying a sufficient and necessary inseparability criterion for CV three-mode entanglement. Strong three-color CV entanglement beams with a double frequency interval can be produced in this simple system. It is experimentally feasible and may be very useful for applications in quantum communication and computation networks.

© 2011 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: January 24, 2011
Revised Manuscript: June 20, 2011
Manuscript Accepted: June 20, 2011
Published: July 14, 2011

Citation
Youbin Yu and Huaijun Wang, "Bright three-color continuous-variable entanglement generated by a cascaded sum-frequency process in an optical cavity," J. Opt. Soc. Am. B 28, 1899-1904 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1899


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992). [CrossRef] [PubMed]
  2. P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef] [PubMed]
  3. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef] [PubMed]
  4. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [CrossRef]
  5. J. Zhang, C. D. Xie, and K. C. Peng, “Continuous-variable quantum state transfer with partially disembodied transport,” Phys. Rev. Lett. 95, 170501 (2005). [CrossRef] [PubMed]
  6. X. Y. Li, Q. Pan, J. T. Jing, J. Zhang, C. D. Xie, and K. C. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002). [CrossRef] [PubMed]
  7. S. L. Braunstein, “Quantum error correction for communication with linear optics,” Nature 394, 47–49 (1998). [CrossRef]
  8. S. Lloyd and J. E. Slotine, “Analog quantum error correction,” Phys. Rev. Lett. 80, 4088–4091 (1998). [CrossRef]
  9. R. E. S. Polkinghorne and T. C. Ralph, “Continuous variable entanglement swapping,” Phys. Rev. Lett. 83, 2095–2099(1999). [CrossRef]
  10. X. J. Jia, X. L. Su, Q. Pan, J. R. Gao, C. D. Xie, and K. C. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503(2004). [CrossRef]
  11. S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,” Phys. Rev. Lett. 82, 1784–1787(1999). [CrossRef]
  12. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030(2008). [CrossRef] [PubMed]
  13. A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823–826 (2009). [CrossRef] [PubMed]
  14. P. D. Drummond and M. D. Reid, “Correlations in nondegenerate parametric oscillation. II. Below threshold results,” Phys. Rev. A 41, 3930–3949 (1990). [CrossRef] [PubMed]
  15. M. D. Reid and P. D. Drummond, “Correlations in nondegenerate parametric oscillation: squeezing in the presence of phase diffusion,” Phys. Rev. A 40, 4493–4506 (1989). [CrossRef] [PubMed]
  16. A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P. Nussenzveig, “Generation of bright two-color continuous variable entanglement,” Phys. Rev. Lett. 95, 243603 (2005). [CrossRef] [PubMed]
  17. A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, “Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator,” Phys. Rev. Lett. 97, 140504 (2006). [CrossRef] [PubMed]
  18. K. N. Cassemiro, A. S. Villar, P. Valente, M. Martinelli, and P. Nussenzveig, “Experimental observation of three-color optical quantum correlations,” Opt. Lett. 32, 695–697 (2007). [CrossRef] [PubMed]
  19. P. Lodahl, “Einstein-Podolsky-Rosen correlations in second-harmonic generation,” Phys. Rev. A 68, 023806 (2003). [CrossRef]
  20. M. K. Olsen, “Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation,” Phys. Rev. A 70, 035801 (2004). [CrossRef]
  21. N. B. Grosse, W. P. Bowen, K. McKenzie, and P. K. Lam, “Harmonic entanglement with second-order nonlinearity,” Phys. Rev. Lett. 96, 063601 (2006). [CrossRef] [PubMed]
  22. N. B. Grosse, S. Assad, M. Mehmet, R. Schnabel, T. Symul, and P. K. Lam, “Observation of entanglement between two light beams spanning an octave in optical frequency,” Phys. Rev. Lett. 100, 243601 (2008). [CrossRef] [PubMed]
  23. S. Q. Zhai, R. G. Yang, D. H. Fan, J. Guo, K. Liu, J. X. Zhang, and J. R. Gao, “Tripartite entanglement from the cavity with second-order harmonic generation,” Phys. Rev. A 78, 014302(2008). [CrossRef]
  24. S. Q. Zhai, R. G. Yang, K. Liu, H. L. Zhang, J. X. Zhang, and J. R. Gao, “Bright two-color tripartite entanglement with second harmonic generation” Opt. Express 17, 9851–9857(2009). [CrossRef] [PubMed]
  25. C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic, “Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber,” Opt. Express 16, 2720–2739(2008). [CrossRef] [PubMed]
  26. Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
  27. Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006). [CrossRef]
  28. J. Guo, H. X. Zou, Z. H. Zhai, J. X. Zhang, and J. R. Gao, “Generation of continuous-variable tripartite entanglement using cascaded nonlinearities,” Phys. Rev. A 71, 034305(2005). [CrossRef]
  29. C. Pennarun, A. S. Bradley, and M. K. Olsen, “Tripartite entanglement and threshold properties of coupled intracavity down-conversion and sum-frequency generation,” Phys. Rev. A 76, 063812 (2007). [CrossRef]
  30. J. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  31. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  32. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997). [CrossRef]
  33. A. Ferraro, M. G. A. Paris, M. Bondani, A. Allevi, E. Puddu, and A. Andreoni, “Three-mode entanglement by interlinked nonlinear interactions in optical x(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
  34. C. W. Gardiner, Quantum Noise (Springer, 1991).
  35. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  36. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984). [CrossRef]
  37. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef] [PubMed]
  38. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996). [CrossRef] [PubMed]
  39. M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A 223, 1–8 (1996). [CrossRef]
  40. R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000). [CrossRef] [PubMed]
  41. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000). [CrossRef] [PubMed]
  42. R. F. Werner and M. M. Wolf, “Bound entangled Gaussian states,” Phys. Rev. Lett. 86, 3658–3661 (2001). [CrossRef] [PubMed]
  43. G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001). [CrossRef]
  44. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  45. A. Serafini, G. Adesso, and F. Illuminati, “Unitarily localizable entanglement of Gaussian states,” Phys. Rev. A 71, 032349(2005). [CrossRef]
  46. Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasi-periodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited