OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1934–1939

Polarization-diverse broadband absorption enhancement in thin-film photovoltaic devices using long-pitch metallic gratings

Yifen Liu and Jaeyoun Kim  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1934-1939 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001934


View Full Text Article

Enhanced HTML    Acrobat PDF (4764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically investigated the impact of long-pitch ( > 800 nm ) metallic gratings on the absorption enhancement in thin-film photovoltaic devices. We found that gratings with such a long pitch can simultaneously enhance the absorption of TM- and TE-polarized sunlight by inducing lateral Fabry–Perot resonances of surface plasmon- polaritons and guided modes at the same time. The grating duty cycle turned out to be the most important factor in realizing the two enhancement effects in the same spectral regime. Especially for the TM light, the combined effect of long grating pitch and duty-cycle adjustment led to the formation of three plasmonic resonances that simultaneously cover the ridge and groove surfaces. All of these produced a polarization-diverse absorption enhancement corresponding to a factor of 1.17 1.18 increase in the photocurrent over a wide range of the grating pitch.

© 2011 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.1950) Optical devices : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

History
Original Manuscript: April 26, 2011
Manuscript Accepted: June 7, 2011
Published: July 18, 2011

Citation
Yifen Liu and Jaeyoun Kim, "Polarization-diverse broadband absorption enhancement in thin-film photovoltaic devices using long-pitch metallic gratings," J. Opt. Soc. Am. B 28, 1934-1939 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  2. N. C. Panoiu and R. M. Osgood, Jr., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825–2827 (2007). [CrossRef] [PubMed]
  3. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007). [CrossRef]
  4. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009). [CrossRef] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  6. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010). [CrossRef]
  7. Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6, 83–89 (2010). [CrossRef]
  8. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010). [CrossRef] [PubMed]
  9. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008). [CrossRef]
  10. J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009). [CrossRef] [PubMed]
  11. G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infrared,” Opt. Express 16, 6867–6876 (2008). [CrossRef] [PubMed]
  12. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18, 19558–19565 (2010). [CrossRef] [PubMed]
  13. J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007). [CrossRef]
  14. L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009). [CrossRef]
  15. F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009). [CrossRef]
  16. http://refractiveindex.info/.
  17. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  18. M. R. Tubbs, “MoO3 layers—optical properties, color centers and holographic recording,” Phys. Status Solidi A 21, 253–260(1974). [CrossRef]
  19. A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91, 061901 (2007). [CrossRef]
  20. Comsol Multiphysics from Comsol, Inc., USA.
  21. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008). [CrossRef]
  22. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008). [CrossRef] [PubMed]
  23. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009). [CrossRef]
  24. A. Naqavi, K. Soderstrom, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin-film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2010). [CrossRef]
  25. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613(1993). [CrossRef] [PubMed]
  26. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  27. C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited