OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1940–1950

Nonlinear electromagnetic response of corrugated metallic gratings

Miriam Gigli, Marina Inchaussandague, Claudio Valencia, and Eugenio Méndez  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1940-1950 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001940


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a theoretical formalism to study the second-harmonic generation in periodically corrugated surfaces illuminated by a plane wave. The incident wave vector is contained in the plane perpendicular to the grating grooves. Our analysis is based on the most general expression for the nonlinear polarization of a homogeneous and isotropic medium. The diffraction problem is solved using a Rayleigh method, and the numerical technique is illustrated by examples for which the nonlinear susceptibilities are calculated with a free-electron model.

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 4, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 26, 2011
Published: July 18, 2011

Citation
Miriam Gigli, Marina Inchaussandague, Claudio Valencia, and Eugenio Méndez, "Nonlinear electromagnetic response of corrugated metallic gratings," J. Opt. Soc. Am. B 28, 1940-1950 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125(1994). [CrossRef]
  2. J. F. McGilp, “Optical characterization of semiconductor surfaces and interfaces,” Prog. Surf. Sci. 49, 1–106 (1995). [CrossRef]
  3. Y. R. Shen, “Wave mixing spectroscopy for surface studies,” Solid State Commun. 102, 221–229 (1997). [CrossRef]
  4. G. Lüpke, “Characterization of semiconductor interfaces by second-harmonic generation,” Surf. Sci. Rep. 35, 75–161 (1999). [CrossRef]
  5. M. C. Downer, B. S. Mendoza, and V. I. Gavrilenko, “Optical second harmonic spectroscopy of semiconductor surfaces: advances in microscopic understanding,” Surf. Interface Anal. 31, 966–986 (2001). [CrossRef]
  6. Y. Maeda, T. Iwai, Y. Satake, K. Fujii, S. Miyatake, D. Miyazaki, and G. Mizutani, “Optical second-harmonic spectroscopy of Au(887) and Au(443) surfaces,” Phys. Rev. B 78, 075440 (2008). [CrossRef]
  7. W.-L. Chen, T.-H. Li, P.-J. Su, C.-K. Chou, P. T. Fwu, S.-J. Lin, D. Kim, P. T. C. So, and C.-Y. Dong, “Second harmonic generation χ tensor microscopy for tissue imaging,” Appl. Phys. Lett. 94, 183902 (2009). [CrossRef]
  8. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17, 3679–3689 (2009). [CrossRef] [PubMed]
  9. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14, 1029–1031 (1965). [CrossRef]
  10. F. Brown and R. E. Parks, “Magnetic-dipole contribution to optical harmonics in silver,” Phys. Rev. Lett. 16, 507–509(1966). [CrossRef]
  11. N. Bloembergen, R. K. Chang, and C. H. Lee, “Second harmonic generation of light in reflection from media with inversion symmetry,” Phys. Rev. Lett. 16, 986–989 (1966). [CrossRef]
  12. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. B 174, 813–822 (1968). [CrossRef]
  13. J. Rudnick and E. A. Stern, “Second harmonic generation from metal surfaces,” Phys. Rev. B 4, 4274–4290 (1971). [CrossRef]
  14. G. A. Farias and A. A. Maradudin, “Second harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30, 3002–3012 (1984). [CrossRef]
  15. J. L. Coutaz, M. Nevière, E. Pic, and R. Reinisch, “Experimental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B 32, 2227–2232 (1985). [CrossRef]
  16. E. Popov and M. Nevière, “Surface-enhanced second-harmonic generation in nonlinear corrugated dielectrics: new theoretical approaches,” J. Opt. Soc. Am. B 11, 1555–1564 (1994). [CrossRef]
  17. A. C. R. Pipino, R. P. Van Duyne, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: experimental investigation of selective enhancement,” Phys. Rev. B 53, 4162–4169(1996). [CrossRef]
  18. D. B. Singh and V. K. Tripathi, “Surface plasmon excitation at second harmonic over a rippled surface,” J. Appl. Phys. 102, 083301 (2007). [CrossRef]
  19. R. T. Deck and R. K. Grygier, “Surface-plasmon enhanced harmonic generation at a rough metal surface,” Appl. Opt. 23, 3202–3213 (1984). [CrossRef] [PubMed]
  20. K. A. O’Donnell, R. Torre, and C. S. West, “Observations of backscattering effects in second-harmonic generation from a weakly rough metal surface,” Opt. Lett. 21, 1738–1740(1996). [CrossRef] [PubMed]
  21. M. A. Leyva-Lucero, E. R. Méndez, T. A. Leskova, A. A. Maradudin, and J. Q. Lu, “Multiple-scattering effects in the second-harmonic generation of light in reflection from a randomly rough metal surface,” Opt. Lett. 21, 1809–1811(1996). [CrossRef] [PubMed]
  22. K. A. O’Donnell and R. Torre, “Second-harmonic generation from a strongly rough metal surface,” Opt. Commun. 138, 341–344 (1997). [CrossRef]
  23. M. A. Leyva-Lucero, E. R. Méndez, T. A. Leskova, and A. A. Maradudin, “Destructive interference effects in the second harmonic light generated at randomly rough metal surfaces,” Opt. Commun. 161, 79–94 (1999). [CrossRef]
  24. J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997). [CrossRef]
  25. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001). [CrossRef] [PubMed]
  26. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two-dimensional particles,” J. Opt. Soc. Am. B 20, 2150–2161(2003). [CrossRef]
  27. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21, 36–44 (2004). [CrossRef]
  28. Y. Pavlyukh and W. Hübner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004). [CrossRef]
  29. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008). [CrossRef]
  30. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009). [CrossRef]
  31. C. I. Valencia, and E. R. Méndez, “Weak localization effects in the second-harmonic light scattered by random systems of particles,” Opt. Commun. 282, 1706–1709 (2009). [CrossRef]
  32. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A 79, 399–416 (1907). [CrossRef]
  33. S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,” Commun. Pure Appl. Math. 4, 351–378(1951). [CrossRef]
  34. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990). [CrossRef]
  35. K. A. O’Donnell and E. R. Méndez, “Enhanced specular peaks in diffuse light scattering from weakly rough metal surfaces,” J. Opt. Soc. Am. A 20, 2338–2346 (2003). [CrossRef]
  36. J. P. Hugonin, R. Petit, and M. Cadilhac, “Plane-wave expansions used to describe the field diffracted by a grating,” J. Opt. Soc. Am. 71, 593–598 (1981). [CrossRef]
  37. A. Wirgin, “Plane-wave expansions used to describe the field diffracted by a grating: comments,” J. Opt. Soc. Am. 72, 812–813 (1982). [CrossRef]
  38. R. A. Depine and M. L. Gigli, “Diffraction from corrugated gratings made with uniaxial crystals: Rayleigh methods,” J. Mod. Opt. 41, 695–715 (1994). [CrossRef]
  39. R. A. Depine and M. L. Gigli, “Conversion between polarization states at the sinusoidal boundary of a uniaxial crystal,” Phys. Rev. B 49, 8437–8445 (1994). [CrossRef]
  40. K. A. O’Donnell and R. Torre, “Characterization of the second-harmonic response of a silver-air interface,” New J. Phys. 7, 154–164 (2005). [CrossRef]
  41. J. E. Sipe and G. I. Stegeman, “Nonlinear optical response of metal surfaces,” in Surface Polaritons, V.M.Agranovich and D.L.Mills, eds. (North-Holland, 1982), pp. 661–701.
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  43. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  44. A. D. Boardman, ed., Electromagnetic Surface Modes(Wiley, 1982).
  45. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited