OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1951–1958

Efficient construction of maximally localized photonic Wannier functions: locality criterion and initial conditions

Tobias Stollenwerk, Dmitry N. Chigrin, and Johann Kroha  »View Author Affiliations


JOSA B, Vol. 28, Issue 8, pp. 1951-1958 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001951


View Full Text Article

Enhanced HTML    Acrobat PDF (8838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wannier function expansions are well suited for the description of photonic-crystal-based defect structures, but constructing maximally localized Wannier functions by optimizing the phase degree of freedom of the Bloch modes is crucial for the efficiency of the approach. We systematically analyze different locality criteria for maximally localized Wannier functions in two-dimensional square and triangular lattice photonic crystals, employing (local) conjugate-gradient as well as (global) genetic-algorithm-based stochastic methods. Besides the commonly used second moment (SM) locality measure, we introduce a new locality measure, namely, the integrated modulus (IM) of the Wannier function. We show numerically that, in contrast to the SM criterion, the IM criterion leads to an optimization problem with a single extremum, thus allowing for fast and efficient construction of maximally localized Wannier functions using local optimization techniques. We also present an analytical formula for the initial choice of Bloch phases, which, under certain conditions, represents the global maximum of the IM criterion and, thus, further increases the optimization efficiency in the general case.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.3120) Optical devices : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: March 28, 2011
Revised Manuscript: June 8, 2011
Manuscript Accepted: June 21, 2011
Published: July 18, 2011

Citation
Tobias Stollenwerk, Dmitry N. Chigrin, and Johann Kroha, "Efficient construction of maximally localized photonic Wannier functions: locality criterion and initial conditions," J. Opt. Soc. Am. B 28, 1951-1958 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-8-1951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  2. A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  3. C. A. J. Fletcher, Computational Galerkin Methods (Springer, 1984).
  4. D. N. Chigrin, “Spatial distribution of the emission intensity in a photonic crystal: self-interference of Bloch eigenwaves,” Phys. Rev. A 79, 1–9 (2009). [CrossRef]
  5. C. Kremers, D. N. Chigrin, and J. Kroha, “Theory of Cherenkov radiation in periodic dielectric media: emission spectrum,” Phys. Rev. A 79, 1–10 (2009). [CrossRef]
  6. C. Kremers and D. N. Chigrin, “Spatial distribution of Cherenkov radiation in periodic dielectric media,” J. Opt. A 11, 114008(2009). [CrossRef]
  7. K. M. Leung, “Defect modes in photonic band structures—a green-function approach using vector Wannier functions,” J. Opt. Soc. Am. B 10, 303–306 (1993). [CrossRef]
  8. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  9. J. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000). [CrossRef]
  10. J. Albert, C. Jouanin, D. Cassagne, and D. Monge, “Photonic crystal modelling using a tight-binding Wannier function method,” Opt. Quantum Electron. 34, 251–263 (2002). [CrossRef]
  11. N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands,” Phys. Rev. B 56, 12847 (1997). [CrossRef]
  12. I. Souza, N. Marzari, and D. Vanderbilt, “Maximally localized Wannier functions for entangled energy bands,” Phys. Rev. B 65, 035109 (2001). [CrossRef]
  13. D. M. Whittaker and M. P. Croucher, “Maximally localized Wannier functions for photonic lattices,” Phys. Rev. B 67, 085204 (2003). [CrossRef]
  14. A. Garcia-Martin, D. Hermann, F. Hagmann, K. Busch, and P. Wölfle, “Defect computations in photonic crystals: a solid state theoretical approach,” Nanotechnology 14, 177 (2003). [CrossRef]
  15. K. Busch, S. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “The Wannier function approach to photonic crystal circuits,” J. Phys. Condens. Matter 15, R1233–R1256 (2003). [CrossRef]
  16. Y. Jiao, S. Mingaleev, M. Schillinger, D. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett. 17, 1875–1877 (2005). [CrossRef]
  17. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006). [CrossRef]
  18. A. McGurn, “Impurity mode techniques applied to the study of light sources,” J. Phys. D 38, 2338–2352 (2005). [CrossRef]
  19. H. Takeda, A. Chutinan, and S. John, “Localized light orbitals: basis states for three-dimensional photonic crystal microscale circuits,” Phys. Rev. B 74 (2006). [CrossRef]
  20. J. des Cloizeaux, “Analytical properties of n-dimensional energy bands and Wannier functions,” Phys. Rev. 135, A698–A707(1964). [CrossRef]
  21. K. Busch, S. F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “Wannier function approach to photonic crystal circuits,” J. Phys. Condens. Matter 15, R1233(2003). [CrossRef]
  22. A. Birner, R. B. Wehrspohn, U. Gsele, and K. Busch, “Silicon-based photonic crystals,” Adv. Mater. 13, 377 (2001). [CrossRef]
  23. GNU Scientific Library, http://www.gnu.org/software/gsl/manual.
  24. MIT Photonic-Bands, http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
  25. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  26. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited