OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 2007–2013

Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate

Bin Chen, Cheng Jiang, and Ka-Di Zhu  »View Author Affiliations

JOSA B, Vol. 28, Issue 8, pp. 2007-2013 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically propose a scheme of an all-optical Kerr switch in a cavity optomechanical system with a Bose–Einstein condensate. It is shown that the nonlinear Kerr response can be easily switched on or off by modulating the pump beam power. We also demonstrate that such a switch can work well under a low power of the pump beam. The scheme proposed here may have potential applications in quantum electronics and quantum information networks.

© 2011 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Nonlinear Optics

Original Manuscript: February 22, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: June 29, 2011
Published: July 22, 2011

Bin Chen, Cheng Jiang, and Ka-Di Zhu, "Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate," J. Opt. Soc. Am. B 28, 2007-2013 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674(2005). [CrossRef] [PubMed]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  3. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32, 1317–1319 (2007). [CrossRef] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009). [CrossRef] [PubMed]
  5. J. Scheuer, A. A. Sukhorukov, and Y. S. Kivshar, “All-optical switching of dark states in nonlinear coupled microring resonators,” Opt. Lett. 35, 3712–3714 (2010). [CrossRef] [PubMed]
  6. F. Qin, Y. Liu, Z. M. Meng, and Z. Y. Li, “Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching,” J. Appl. Phys. 108, 053108 (2010). [CrossRef]
  7. X. Wei, J. Zhang, and Y. Zhu, “All-optical switching in a coupled cavity–atom system,” Phys. Rev. A 82, 033808 (2010). [CrossRef]
  8. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef] [PubMed]
  9. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef] [PubMed]
  10. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  11. M. Ludwig, B. Kubala, and F. Marquardt, “The optomechanical instability in the quantum regime,” New J. Phys. 10, 095013(2008). [CrossRef]
  12. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
  13. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef] [PubMed]
  14. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010). [CrossRef]
  15. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]
  16. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010). [CrossRef]
  17. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose–Einstein condensate,” Nature 450, 268–271 (2007). [CrossRef] [PubMed]
  18. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007). [CrossRef] [PubMed]
  19. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose–Einstein condensate,” Science 322, 235–238 (2008). [CrossRef] [PubMed]
  20. D. Nagy, P. Domokos, A. Vukics, and H. Ritsch, “Nonlinear quantum dynamics of two BEC modes dispersively coupled by an optical cavity,” Eur. Phys. J. D 55, 659–668 (2009). [CrossRef]
  21. J. M. Zhang, F. C. Cui, D. L. Zhou, and W. M. Liu, “Nonlinear dynamics of a cigar-shaped Bose–Einstein condensate in an optical cavity,” Phys. Rev. A 79, 033401 (2009). [CrossRef]
  22. S. Ritter, F. Brennecke, K. Baumann, T. Donner, C. Guerlin, and T. Esslinger, “Dynamical coupling between a Bose–Einstein condensate and a cavity optical lattice,” Appl. Phys. B 95, 213–218 (2009). [CrossRef]
  23. D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate in an optical cavity,” Phys. Rev. Lett. 104, 130401(2010). [CrossRef] [PubMed]
  24. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]
  25. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  26. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761 (1985). [CrossRef] [PubMed]
  27. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000), pp. 148–153.
  28. R. W. Boyd, Nonlinear Optics (Academic, 2008), p. 207. [CrossRef]
  29. A. B. Bhattacherjee, “Cavity quantum optomechanics of ultracold atoms in an optical lattice: normal-mode splitting,” Phys. Rev. A 80, 043607 (2009). [CrossRef]
  30. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76, 127–137 (1998). [CrossRef]
  31. G. Szirmai, D. Nagy, and P. Domokos, “Quantum noise of a Bose–Einstein condensate in an optical cavity, correlations, and entanglement,” Phys. Rev. A 81, 043639 (2010). [CrossRef]
  32. J. D. Teufel, Dale Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208(2011). [CrossRef] [PubMed]
  33. R. W. Keys, “Power dissipation in information processing,” Science 168, 796–801 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited