OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 2014–2017

Microscopic approach for intersubband-based thermophotovoltaic structures in the terahertz and mid-infrared

Mauro F. Pereira, Jr.  »View Author Affiliations

JOSA B, Vol. 28, Issue 8, pp. 2014-2017 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes microscopic calculations of photocurrent generation spectra due to intersubband transitions in semiconductor heterostructures that can extract energy from photons in the terahertz and mid-IR ranges. As expected in the mid-IR, the interconduction conduction band transitions dominate the photocurrent. However, the numerical results presented here show that in the far-IR there is a range in which valence-band-based transitions dominate the photocurrent, and these can be sustained under perpendicular incidence. This would lead to devices that do not need prisms and couplers in contrast with conduction band-based intersubband absorbers. Examples for different quantum well structures and different thermal source temperatures are compared and contrasted numerically. It is further demonstrated that many body effects, so far ignored in simulations of materials for photovoltaic and thermophotovoltaic applications, are shown to be of relevance for both conduction (TM mode) and valence-band based (TE mode) configurations.

© 2011 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.6050) Other areas of optics : Solar energy
(040.2235) Detectors : Far infrared or terahertz

ToC Category:

Original Manuscript: April 29, 2011
Manuscript Accepted: May 19, 2011
Published: July 25, 2011

Mauro F. Pereira, Jr., "Microscopic approach for intersubband-based thermophotovoltaic structures in the terahertz and mid-infrared," J. Opt. Soc. Am. B 28, 2014-2017 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  2. A. Feltrin and A. Freundlich, “Material considerations for terawatt. Level deployment of photovoltaics,” Renew. Energy 33, 180–185 (2008). [CrossRef]
  3. S. Tomić, “Intermediate-band solar cells: influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82, 195321 (2010). [CrossRef]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  5. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004). [CrossRef]
  6. C. Goupil, “Thermodynamics of the thermoelectric potential,” J. Appl. Phys. 106, 104907 (2009). [CrossRef]
  7. J. Yin and R. Paiella, “Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion,” Opt. Express 18, 1618–1629 (2010). [CrossRef] [PubMed]
  8. M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994). [CrossRef]
  9. M. F. Pereira Jr. and K. Hennerberger, “Gain mechanisms and lasing in II-VI compounds,” Phys. Stat. Sol. B 202, 751–762(1997). [CrossRef]
  10. M. F. Pereira Jr. and K. Hennerberger, “Microscopic theory for the optical properties of Coulomb-correlated semiconductors,” Phys. Stat. Sol. B 206, 477–491 (1998). [CrossRef]
  11. G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004). [CrossRef] [PubMed]
  12. J. Li and C. Z. Ning, “Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well,” Phys. Rev. B 70, 125309 (2004). [CrossRef]
  13. M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70, 205331 (2004). [CrossRef]
  14. R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007). [CrossRef]
  15. M. F. Pereira Jr., “Intersubband antipolaritons: microscopic approach,” Phys. Rev. B 75, 195301 (2007). [CrossRef]
  16. T. Schmielau and M. F. Pereira Jr., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95, 231111 (2009). [CrossRef]
  17. T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010). [CrossRef]
  18. A. L. Bris and J. F. Guillemoles, “Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts,” Appl. Phys. Lett. 97, 113506 (2010). [CrossRef]
  19. S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006). [CrossRef]
  20. V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001). [CrossRef]
  21. W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited