OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 2025–2029

Perfect relay lens at microwave frequencies based on flattening a Maxwell lens

John Hunt, Gyushik Jang, and David R. Smith  »View Author Affiliations

JOSA B, Vol. 28, Issue 8, pp. 2025-2029 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the design and implementation of a two-dimensional metamaterial relay lens, conceptually formed by flattening a Maxwell fisheye lens—a perfect imaging device—through the use of a coordinate transformation. Because Maxwell’s equations are form-invariant under coordinate transformations, the specifications for the constitutive parameters of the device are obtained immediately in a procedure that has now become known as transformation optics. To obtain a more favorable implementation of the lens, we seek a quasi-conformal transformation optics transformation that minimizes the required anisotropy, such that the resulting lens can be formed using isotropic, dielectric-only media. We demonstrate a flattened Maxwell lens at microwave frequencies using a nonresonant metamaterial and confirm its focusing and broad bandwidth behavior. Such planar, dielectric-only structures can be readily implemented in infrared and optical waveguides.

© 2011 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(080.3630) Geometric optics : Lenses
(220.4610) Optical design and fabrication : Optical fabrication
(350.4010) Other areas of optics : Microwaves
(350.6980) Other areas of optics : Transforms
(160.3918) Materials : Metamaterials

Original Manuscript: May 26, 2011
Manuscript Accepted: June 22, 2011
Published: July 25, 2011

John Hunt, Gyushik Jang, and David R. Smith, "Perfect relay lens at microwave frequencies based on flattening a Maxwell lens," J. Opt. Soc. Am. B 28, 2025-2029 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Schurig, J. B. Pendry, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  3. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 1–4 (2008). [CrossRef]
  4. T. Zentgraf, G. Bartal, J. Valentine, J. Li, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571(2009). [CrossRef] [PubMed]
  5. C. B. Poitras, L. H. Gabriell, J. Cardenas, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009). [CrossRef]
  6. E. W. Marchland, Gradient Index Optics (Academic, 1978).
  7. J. E. Eaton, “An extension of the Luneburg-type lenses,” Naval Res. Lab. 4110, 1–20 (1953).
  8. T. Tyc, U. Leonhardt, Y. G. Ma, and C. K. Ong, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639–642 (2009). [CrossRef] [PubMed]
  9. D. Schurig, “An aberration-free lens with zero f-number,” New J. Phys. 10, 115034 (2008). [CrossRef]
  10. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2009). [CrossRef] [PubMed]
  11. N. B. Kundtz, D. R. Smith, Y. Urzhumov, and N. I. Landy, “Enhancing imaging systems using transformation optics,” Opt. Express 18, 21238–21251 (2010). [CrossRef] [PubMed]
  12. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007). [CrossRef]
  13. D. R. Smith, “Analytic expressions for the constitutive parameters of magnetoelectric metamaterials,” Phys. Rev. 81, 036605(2009). [CrossRef]
  14. D. J. Robbins, J. B. Pendry, A. J. Holden, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  15. J. J. Mock, D. Schurig, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]
  16. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  17. N. Landy and W. Padilla, “Guiding light with conformal transformations,” Opt. Express 17, 14872–14879 (2009). [CrossRef] [PubMed]
  18. B. Justice, J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14, 8694–8705 (2006). [CrossRef] [PubMed]
  19. T. Koschny, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  20. V. D. Likar-Smiljanic, A. R. Djordjevic, R. M. Biljic, and T. K. Sarkar, “Wideband frequency-domain characterization of fr-4 and time-domain causality,” IEEE Trans. Electromagn. Compat. 43, 662–667 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited