OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2066–2069

Femtosecond 1 GHz Ti:sapphire laser as a tool for coherent spectroscopy in atomic vapor

Marco P. Moreno and Sandra S. Vianna  »View Author Affiliations

JOSA B, Vol. 28, Issue 9, pp. 2066-2069 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a 1 GHz femtosecond laser as a tool to perform coherent spectroscopy in an atomic vapor. The action of the ultrashort pulse train over the various velocity groups or over a selective group of rubidium atoms is probed by a diode laser using velocity-selective or repetition rate spectroscopies. In particular, we show that the 1 GHz frequency separation of the modes in the frequency comb allows distinguishing of the different hyperfine levels within the Doppler broadened profile. The data are in good agreement with numerical and analytical results.

© 2011 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:

Original Manuscript: May 17, 2011
Revised Manuscript: July 11, 2011
Manuscript Accepted: July 11, 2011
Published: August 4, 2011

Marco P. Moreno and Sandra S. Vianna, "Femtosecond 1 GHz Ti:sapphire laser as a tool for coherent spectroscopy in atomic vapor," J. Opt. Soc. Am. B 28, 2066-2069 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–236 (2002). [CrossRef] [PubMed]
  2. Y. V. Baklanov and V. P. Chebotayev, “Narrow resonances of two-photon absorption of super-narrow pulses in a gas,” Appl. Phys. 12, 97–99 (1977). [CrossRef]
  3. R. J. Teets and T. W. Hansch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38, 760–764(1977). [CrossRef]
  4. A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, “Stabilization of femtosecond laser frequency combs with subhertz residual linewidths,” Opt. Lett. 29, 1081–1083 (2004). [CrossRef] [PubMed]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  6. W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levix, T. E. Parker, and J. C. Bergquistk, “Single-atom optical clock with high accuracy,” Phys. Rev. Lett. 97, 020801 (2006). [CrossRef] [PubMed]
  7. M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100, 203001 (2008). [CrossRef] [PubMed]
  8. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005). [CrossRef]
  9. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2068 (2004). [CrossRef] [PubMed]
  10. M. Maric, J. J. McFerran, and A. N. Luiten, “Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium,” Phys. Rev. A 77, 032502 (2008). [CrossRef]
  11. J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, “Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor,” Phys. Rev. A 81, 043840 (2010). [CrossRef]
  12. D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, “Velocity selective optical pumping of Rb hyperfine lines induced by a train of femtosecond pulses,” Phys. Rev. Lett. 95, 233001(2005). [CrossRef] [PubMed]
  13. T. Ban, D. Aumiler, H. Skenderović, S. Vdović, N. Vujičić, and G. Pichler, “Cancellation of the coherent accumulation in rubidium atoms excited by a train of femtosecond pulses,” Phys. Rev. A 76, 043410 (2007). [CrossRef]
  14. L. Arissian and J.-C. Diels, “Repetition rate spectroscopy of the dark line resonance in rubidium,” Opt. Commun. 264, 169–173(2006). [CrossRef]
  15. M. Polo, C. A. C. Bosco, L. H. Acioli, D. Felinto, and S. S. Vianna, “Coupling between cw lasers and a frequency comb in dense atomic samples,” J. Phys. B At. Mol. Opt. Phys. 43, 055001(2010). [CrossRef]
  16. D. A. Steck, “Rubidium 85 D line data,” http://steck.us/alkalidata.
  17. M. P. Moreno and S. S. Vianna, “Coherence induced by a train of ultrashort pulses in a Λ-type system,” J. Opt. Soc. Am. B 28, 1124–1129 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited