OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2105–2114

Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser using point-by-point inscription

Thomas Allsop, Kyriacos Kalli, Kaiming Zhou, Graham N. Smith, Michael Komodromos, Jovana Petrovic, David J. Webb, and Ian Bennion  »View Author Affiliations


JOSA B, Vol. 28, Issue 9, pp. 2105-2114 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002105


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600 h . The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2285) Optical devices : Fiber devices and optical amplifiers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fluorescent Luminescent Materials

History
Original Manuscript: January 4, 2011
Revised Manuscript: May 9, 2011
Manuscript Accepted: June 6, 2011
Published: August 8, 2011

Citation
Thomas Allsop, Kyriacos Kalli, Kaiming Zhou, Graham N. Smith, Michael Komodromos, Jovana Petrovic, David J. Webb, and Ian Bennion, "Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser using point-by-point inscription," J. Opt. Soc. Am. B 28, 2105-2114 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-9-2105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773(1997). [CrossRef]
  2. T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003). [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef] [PubMed]
  4. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999). [CrossRef]
  5. G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Optics Commun. 208, 329–335 (2002). [CrossRef]
  6. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004). [CrossRef]
  7. T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008). [CrossRef]
  8. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, “Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber,” Opt. Lett. 31, 2675–2677 (2006). [CrossRef] [PubMed]
  9. G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett. 27, 1013–1015 (2002). [CrossRef]
  10. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–629 (2004). [CrossRef]
  11. W. S. James and P. R. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003). [CrossRef]
  12. H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006). [CrossRef]
  13. A. A. Fotiadi, G. Brambilla, T. Ernst, S. A. Slattery, and D. N. Nikogosyan, “TPA-induced long-period gratings in a photonic crystal fiber: inscription and temperature sensing properties,” J. Opt. Soc. Am. B 24, 1475–1481 (2007). [CrossRef]
  14. E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007). [CrossRef]
  15. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002). [CrossRef]
  16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008). [CrossRef]
  17. H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007). [CrossRef]
  18. T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006). [CrossRef]
  19. T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008). [CrossRef]
  20. T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009). [CrossRef]
  21. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004). [CrossRef]
  22. C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008). [CrossRef]
  23. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006). [CrossRef]
  24. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314(2004). [CrossRef] [PubMed]
  25. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007). [CrossRef]
  26. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001). [CrossRef]
  27. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air silica microstructure fiber,” Opt. Lett. 29, 38–40 (2004). [CrossRef] [PubMed]
  28. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006). [CrossRef]
  29. M. Sakakura, M. Terazima, Y. Shimotsumal, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007). [CrossRef] [PubMed]
  30. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–885 (1997). [CrossRef]
  31. G. N. Smith, K. Kalli, and K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and OptoelectronicsB.Pal, ed. (InTech, 2010), Chap. 15, p. 674.
  32. C. W. Smelser, S. J. Mihailov, and D. Grobnic “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5386 (2005). [CrossRef] [PubMed]
  33. COMSOL, “COMSOL multiphysics,” http://www.comsol.com.
  34. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fibre: the photo-inscription of gratings,” Opt. Express 15, 7876–7887 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited