OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2105–2114

Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser using point-by-point inscription

Thomas Allsop, Kyriacos Kalli, Kaiming Zhou, Graham N. Smith, Michael Komodromos, Jovana Petrovic, David J. Webb, and Ian Bennion  »View Author Affiliations


JOSA B, Vol. 28, Issue 9, pp. 2105-2114 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002105


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600 h . The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2285) Optical devices : Fiber devices and optical amplifiers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fluorescent Luminescent Materials

History
Original Manuscript: January 4, 2011
Revised Manuscript: May 9, 2011
Manuscript Accepted: June 6, 2011
Published: August 8, 2011

Citation
Thomas Allsop, Kyriacos Kalli, Kaiming Zhou, Graham N. Smith, Michael Komodromos, Jovana Petrovic, David J. Webb, and Ian Bennion, "Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser using point-by-point inscription," J. Opt. Soc. Am. B 28, 2105-2114 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-9-2105

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited