OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2115–2122

Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures

Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski  »View Author Affiliations

JOSA B, Vol. 28, Issue 9, pp. 2115-2122 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a self-consistent analytical approach to describe the optical response of a magnetoplasmonic heterostructure upon surface plasmon polariton (SPP) excitation. The approach is based on the effective susceptibility concept in the frame of the Green’s function method and accounts for the local-field effects in the system. The formalism was applied to describe the polar Kerr effect in magnetoplasmonic bilayers consisting of Co and Au on an attenuated total reflection prism. It is demonstrated that the excitation of the SPP in the plasmonic film can lead to an enhancement of the Kerr effect. Analysis performed for the s- and p-polarized incident radiation showed that the enhancement of the Kerr effect is of resonant character, and it is observed when the incident angle of the probing light is close to the angles of the SPP excitation. Thickness-dependent study revealed that the largest enhancement of the Kerr effect is observed for rather thin magnetic layers in the range of couple of nanometers.

© 2011 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(260.2065) Physical optics : Effective medium theory
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Optics at Surfaces

Original Manuscript: April 14, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 8, 2011
Published: August 8, 2011

Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, "Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures," J. Opt. Soc. Am. B 28, 2115-2122 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Gómez-Rivas, J. A. Sánchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B 74, 245324 (2006). [CrossRef]
  2. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007). [CrossRef]
  3. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008). [CrossRef] [PubMed]
  4. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009). [CrossRef]
  5. G. Armelles, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, M. U. González, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112(2008). [CrossRef] [PubMed]
  6. Y. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010). [CrossRef]
  7. M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112–3114 (2004). [CrossRef]
  8. Y. Demidemko, D. Makarov, P. Krone, and V. Lozovski, “Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix,” J. Opt. A: Pure Appl. Opt. 11, 125001 (2009). [CrossRef]
  9. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009). [CrossRef] [PubMed]
  10. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994). [CrossRef] [PubMed]
  11. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001). [CrossRef]
  12. G. Xiang Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Magneto-optical effects in nanosandwich array plasmonic structure of Au/[Co/Pt]n/Au,” J. Appl. Phys. 107, 09A928 (2010). [CrossRef]
  13. M. Essone Mezeme, S. Lasquellec, and S. Brosseau, “Electromagnetic properties of resonant magnetoplasmonic core-shell nanostructures,” J. Appl. Phys. 109, 014302 (2011). [CrossRef]
  14. T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, “Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films,” Phys. Rev. Lett. 60, 1426–1429 (1988). [CrossRef] [PubMed]
  15. D. Weller, “Magneto-optical Kerr spectroscopy of transition metal alloy and compound films,” in Spin-Orbit-Influenced Spectroscopy of Magnetic Solids, Vol.  466 of Lecture Notes in Physics (Springer, 1996), pp. 1–28. [CrossRef]
  16. A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005). [CrossRef]
  17. N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B 21, 791–797 (2004). [CrossRef]
  18. B. I. Khudik, V. Z. Lozovskii, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Status Solidi B 153, 167–177 (1989). [CrossRef]
  19. M. L. Bah, A. Akjouj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992). [CrossRef]
  20. O. Keller, “Local fields in electrodynamics of mesoscopic media,” Phys. Rep. 268, 85–262 (1996). [CrossRef]
  21. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  22. D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polariton, S.Kawata, ed., Vol.  81 of Topics in Appled Physics (Springer, 2001), pp. 1–13. [CrossRef]
  23. D. C. S. Beddows, B. C. Griffiths, O. Samek, and H. H. Telle, “Application of frustrated total internal reflection devices to analytical laser spectroscopy,” Appl. Opt. 42, 6006–6015 (2003). [CrossRef] [PubMed]
  24. B. Sepúlveda, L. G. Carrascosa, D. Regatos, M. A. Otte, D. Farina, and L. M. Lechuga, “Surface plasmon resonance biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 73970Y (2009). [CrossRef]
  25. V. Chegel, Y. Chegel, M. Guiver, A. Lopatynskyi, O. Lopatynska, and V. Lozovski, “3D-quantification of biomolecular covers using surface plasmon-polariton resonance experiment,” Sens. Actuators B 134, 66–71 (2008). [CrossRef]
  26. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nanotoday 4, 244–251(2009). [CrossRef]
  27. N. Richard, A. Dereux, T. David, E. Bourillot, and J. P. Goudonnet, “Magneto-optical effects in multilayers illuminated by total internal reflection,” Phys. Rev. B 59, 5936–5944 (1999). [CrossRef]
  28. N. Richard, A. Dereux, E. Bourillot, T. David, J. P. Goudonnet, F. Scheurer, and E. Beaurepaire, “Kerr and Faraday rotations of magneto-optical multilayers under the condition of total internal reflection,” Phys. Status Solidi B 175, 225–232 (1999). [CrossRef]
  29. D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010). [CrossRef]
  30. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010). [CrossRef]
  31. N. J. Harrik, Internal Reflection Spectroscopy (Wiley, 1967).
  32. E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, 2001). [CrossRef]
  33. C. Y. You and S. C. Shin, “Derivation of simplified analytic formulae for magneto-optical Kerr effects,” Appl. Phys. Lett. 69, 1315–1317 (1996). [CrossRef]
  34. P. Weinberger, “John Kerr and his effects found in 1877 and 1878,” Philos. Mag. Lett. 88, 897–907 (2008). [CrossRef]
  35. C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, “Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. Rev. B 34, 3192–3197(1986). [CrossRef]
  36. R. Allenspach, M. Stampanoni, and A. Bischof, “Magnetic domains in thin epitaxial Co/Au(111) films,” Phys. Rev. Lett. 65, 3344 (1990). [CrossRef] [PubMed]
  37. G. S. Krinchik, “Ferromagnetic Hall effect at optical frequencies and inner effective magnetic field of ferromagnetic metals,” J. Appl. Phys. 35, 1089–1092 (1964). [CrossRef]
  38. R. Carey and B. W. J. Thomas, “The theory of the Voigt effect in ferromagnetic materials,” J. Phys. D 7, 2362–2368(1974). [CrossRef]
  39. M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  40. V. Chegel, Y. Demidenko, V. Lozovski, and A. Tsykhonya, “Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons,” Surf. Sci. 602, 1540–1546 (2008). [CrossRef]
  41. V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited