OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2159–2164

Slow light in insulator–metal–insulator plasmonic waveguides

Emmanouil-Panagiotis Fitrakis, Thomas Kamalakis, and Thomas Sphicopoulos  »View Author Affiliations


JOSA B, Vol. 28, Issue 9, pp. 2159-2164 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002159


View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study numerically the slow-light capability of insulator–metal–insulator (IMI) plasmonic waveguides. Metal-induced losses are included in the calculation of the dispersion relations, and their effect on the slow-light properties of the waveguide is investigated. In addition to reducing the propagation lengths of surface plasmon polaritons, losses are found to limit the achievable slowdown factors and the practical potential of the device. To alleviate the problem, we consider active materials. Using realistic parameters, we find that a spectral region is then formed where a slow-light pulsed signal can achieve infinite propagation lengths or be amplified. The optical buffering capabilities of the IMI waveguide with losses are analyzed, and we conclude that while losses limit the buffering capabilities of the passive device, the use of active materials may combat the problem effectively from an application point of view.

© 2011 Optical Society of America

OCIS Codes
(200.4490) Optics in computing : Optical buffers
(240.6680) Optics at surfaces : Surface plasmons
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optics in Computing

History
Original Manuscript: April 26, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: July 19, 2011
Published: August 15, 2011

Citation
Emmanouil-Panagiotis Fitrakis, Thomas Kamalakis, and Thomas Sphicopoulos, "Slow light in insulator–metal–insulator plasmonic waveguides," J. Opt. Soc. Am. B 28, 2159-2164 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-9-2159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008). [CrossRef]
  2. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  5. J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002). [CrossRef]
  6. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986). [CrossRef]
  9. B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991). [CrossRef]
  10. P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997). [CrossRef]
  11. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005). [CrossRef] [PubMed]
  12. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573–576 (2007). [CrossRef]
  13. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010) [CrossRef] [PubMed]
  14. E. P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow-light dark solitons in insulator-insulator-metal plasmonic waveguides,” J. Opt. Soc. Am. B 27, 1701–1706 (2010). [CrossRef]
  15. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005). [CrossRef]
  16. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  17. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009). [CrossRef]
  18. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010). [CrossRef] [PubMed]
  19. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010). [CrossRef]
  20. Y. Zhang, X. Zhang, T. Mei, and M. Fiddy, “Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases,” Opt. Express 18, 12213–12225 (2010). [CrossRef] [PubMed]
  21. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley & Sons, 2002). [CrossRef]
  22. D. E. Müller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Other Aids Comput. 10, 208–215 (1956). [CrossRef]
  23. R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011). [CrossRef]
  24. A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011). [CrossRef]
  25. L. Brillouin, Wave Propagation and Group Velocity(Academic, 1960).
  26. A. Dogariu, A. Kuzmich, H. Cao, and L. Wang, “Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium,” Opt. Express 8, 344–350 (2001). [CrossRef] [PubMed]
  27. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  28. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef] [PubMed]
  29. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited