OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2200–2206

Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra

Chih-Hsien Lai, Ja-Yu Lu, and Hung-chun Chang  »View Author Affiliations

JOSA B, Vol. 28, Issue 9, pp. 2200-2206 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral effects of adding metallic layers outside the terahertz (THz) antiresonant reflecting hollow waveguides are investigated in this work. We first examine the one-dimensional case, i.e., the slab-type hollow waveguide. Numerical results indicate that, with metallic coating outside the dielectric claddings, the loss spectrum shifts half-period for the TE mode, but not for the TM mode. Then, we investigate the situation where the metallic layers are moveable off the claddings and calculate the amount of the spectral shift for the TE mode. Finally, the two-dimensional cylindrical hollow waveguide, i.e., the recently proposed THz pipe waveguide, with metallic coating is inspected. It is found that the loss spectrum of the TE 01 mode shifts half-period and that of the TM 01 mode remains unmoved; while for the HE 11 and HE 21 modes, their periods become half of the original ones owing to the hybrid-mode nature.

© 2011 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(260.3090) Physical optics : Infrared, far
(310.3915) Thin films : Metallic, opaque, and absorbing coatings

ToC Category:
Thin Films

Original Manuscript: May 12, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 16, 2011
Published: August 17, 2011

Chih-Hsien Lai, Ja-Yu Lu, and Hung-chun Chang, "Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra," J. Opt. Soc. Am. B 28, 2200-2206 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000). [CrossRef]
  2. J. A. Harrington, R. George, P. Pedersen, and E. Muller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef] [PubMed]
  3. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [CrossRef]
  4. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001). [CrossRef]
  5. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009). [CrossRef]
  6. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005). [CrossRef]
  7. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  8. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef] [PubMed]
  9. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008). [CrossRef]
  10. R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007). [CrossRef]
  11. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  12. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009). [CrossRef] [PubMed]
  13. M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  14. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004). [CrossRef] [PubMed]
  15. U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993). [CrossRef]
  16. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express 19, 162–167 (2011). [CrossRef] [PubMed]
  17. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984). [CrossRef]
  18. J. A. Harrington, Infrared Fibers and their Applications (SPIE, 2003).
  19. M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983). [CrossRef]
  20. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008). [CrossRef]
  21. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010). [CrossRef] [PubMed]
  22. S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003). [CrossRef]
  23. W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflection materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26, 114210(2009). [CrossRef]
  24. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010). [CrossRef] [PubMed]
  25. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited